The array a with n integers is given. Let's call the sequence of one or more consecutive elements in a segment. Also let's call the segment k-good if it contains no more than k different values.
Find any longest k-good segment.
As the input/output can reach huge size it is recommended to use fast input/output methods: for example, prefer to use scanf/printf instead of cin/cout in C++, prefer to use BufferedReader/PrintWriter instead of Scanner/System.out in Java.
InputThe first line contains two integers n, k (1 ≤ k ≤ n ≤ 5·105) — the number of elements in a and the parameter k.
The second line contains n integers ai (0 ≤ ai ≤ 106) — the elements of the array a.
OutputPrint two integers l, r (1 ≤ l ≤ r ≤ n) — the index of the left and the index of the right ends of some k-good longest segment. If there are several longest segments you can print any of them. The elements in a are numbered from 1 to n from left to right.
Examples Input 5 5 1 2 3 4 5 Output 1 5 Input 9 3 6 5 1 2 3 2 1 4 5 Output 3 7 Input 3 1 1 2 3 Output 1 1题目大意:
给你长度为N的一个序列,让你找到一个最长的连续子序列,使得其中元素的种类数不超过K个。
思路:
很裸的尺取法的问题啊。
我萌维护一个窗口,使得窗口一直保证是一个连续合法子序列,过程维护一个最长就行啊。
Ac代码:
#include<stdio.h> #include<string.h> #include<map> using namespace std; int a[505000]; int main() { int n,k; while(~scanf("%d%d",&n,&k)) { for(int i=0;i<n;i++)scanf("%d",&a[i]); int sum=0; int l=0; int r=0; int L,R; int output=0; map<int ,int >s; while(r<n) { s[a[r]]++; if(s[a[r]]==1)sum++; if(sum<=k) { if(r-l+1>output) { L=l,R=r; output=r-l+1; } } if(sum==k) { while(r+1<n) { if(s[a[r+1]]==0)break; else s[a[r+1]]++,r++; if(r-l+1>output) { L=l,R=r; output=r-l+1; } } while(l<=r&&sum==k) { s[a[l]]--; if(s[a[l]]==0)sum--; l++; } } r++; } printf("%d %d\n",L+1,R+1); // printf("%d\n",output); } }