introduction
images are not just functions (intensity). it also contains location properties.
1D correlation
the filter is normalized and then is used to compute cross -correlation. why the peak value is at index 60? because positve value in signal [50,70] multiply positive value in filter, and negative value in signal [50,70] multiply negative value in filter. At last, we sum them up.
cross-correlation in matlab
fruit = rgb2gray(imread(
'../pics/fruit.png'));
apple = rgb2gray(imread(
'../pics/apple.png'));
c = normxcorr2(apple, fruit);
figure;
surf(c);
shading flat;
function index = find_template_1D(t, s)
c = normxcorr2(t,s);
[~,index] = max(c);
index = index -
size(t,
2) +
1;
end
pkg load image;
s =
[-1 0 0 1 1 1 0 -1 -1 0 1 0 0 -1];
t =
[1 1 0];
disp(
'Signal:'),
disp(
[1:size(s, 2); s]);
disp(
'Template:'),
disp(
[1:size(t, 2); t]);
index = find_template_1D(t, s);
disp(
'Index:'),
disp(index);
template matching
% Find template
2D
% NOTE: Function definition must be the very first piece of code here!
function [yIndex xIndex] = find_template_2D(template, img)
% TODO: Find template in img
and return [y x] location
% NOTE: Turn off all output from inside the
function before submitting!
c = normxcorr2(template, img);
[~,idx] = max(c(:));
[yIndex, xIndex] = ind2sub(
size(c), idx);
xIndex = xIndex -
size(template,
2) +
1;
yIndex = yIndex -
size(template,
1) +
1;
endfunction
pkg
load image; % AFTER
function definition
% Test code:
tablet = imread(
'tablet.png');
imshow(tablet);
glyph = tablet(
75:
165,
150:
185);
imshow(glyph);
[y x] = find_template_2D(glyph, tablet);
% y row number
% x column number
disp(
[y x]); % should be the top-left corner of template in tablet
colormap(
'gray'),imagesc(tablet);
hold on;
plot(x,y,
'r+',
'markersize',
16);
hold on;
but we have more powerful tools to detection face.