import tensorflow
as tf
from tensorflow.contrib.learn.python.learn.datasets.mnist
import read_data_sets
import tensorflow.examples.tutorials.mnist.input_data
as input_data
mnist=input_data.read_data_sets(
"MNIST_data/",one_hot=
True)
sess = tf.InteractiveSession()
x = tf.placeholder(
"float", shape=[
None,
784])
y_ = tf.placeholder(
"float", shape=[
None,
10])
w=tf.Variable(tf.zeros([
784,
10]))
b=tf.Variable(tf.zeros([
10]))
y=tf.nn.softmax(tf.matmul(x,w)*b)
def weight_Variable(shape):
initial=tf.truncated_normal(shape,stddev=
0.1)
return tf.Variable(initial)
def bias_Variable(shape):
initial=tf.constant(
0.1,shape=shape)
return tf.Variable(initial)
def conv2d(x,W):
return tf.nn.conv2d(x,W,strides=[
1,
1,
1,
1],padding=
'SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x,ksize=[
1,
2,
2,
1],strides=[
1,
2,
2,
1],padding=
'SAME')
W_conv1=weight_Variable([
5,
5,
1,
32])
b_conv1=bias_Variable([
32])
x_image=tf.reshape(x,[-
1,
28,
28,
1])
h_conv1=tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)
h_pool1=max_pool_2x2(h_conv1)
W_conv2=weight_Variable([
5,
5,
32,
64])
b_conv2=bias_Variable([
64])
h_conv2=tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)
h_pool2=max_pool_2x2(h_conv2)
W_fc1=weight_Variable([
7*
7*
64,
1024])
b_fc1=bias_Variable([
1024])
h_pool2_flat=tf.reshape(h_pool2,[-
1,
7*
7*
64])
h_fc1=tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)
keep_prob=tf.placeholder(
"float")
h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob)
W_fc2=weight_Variable([
1024,
10])
b_fc2=bias_Variable([
10])
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)
cross_entropy=-tf.reduce_sum(y_*tf.log(y_conv))
train_step=tf.train.AdamOptimizer(
1e-4).minimize(cross_entropy)
correct_predicton=tf.equal(tf.argmax(y_conv,
1),tf.argmax(y_,
1))
accuracy=tf.reduce_mean(tf.cast(correct_predicton,
"float"))
sess.run(tf.initialize_all_variables())
for i
in range(
20000):
batch=mnist.train.next_batch(
50)
if i%
100 ==
0:
train_accuracy=accuracy.eval(feed_dict={x:batch[
0],y_:batch[
1],keep_prob:
1.0})
print(
"step%d,training accuracy %g"%(i,train_accuracy))
train_step.run(feed_dict={x:batch[
0],y_:batch[
1],keep_prob:
0.5})