转载请注明本文出自maplejaw的博客(http://blog.csdn.net/maplejaw_)
开源库地址:https://github.com/square/okhttp 解读版本:3.4.1
OkHttp是目前非常流行的网络请求库,出自Square公司。对于该库的使用,相信大家已经比较熟悉了。今天,我将从源码角度对OkHttp3进行剖析。
Okhttp的使用可以分为四步:
初始化客户端(实际应用中应当保持单例)
//获取一个客户端 OkHttpClient client = new OkHttpClient.Builder() ... .build(); 1234 1234构建Request
//构建一个Request Request request = new Request.Builder() .url(url) .build(); 1234 1234获取Call对象
//获取Call对象 Call call=client.newCall(request); 12 12发送请求(execute同步/enqueue异步)
//同步调用 Response response = call.execute(); //异步调用 call.enqueue(new Callback() { @Override public void onFailure(Call call, IOException e) { } @Override public void onResponse(Call call, Response response) throws IOException { } }); 123456789101112131415 123456789101112131415当然,在使用类似POST等可以设置请求体的请求方法时,我们还可以如下构建请求体。
构建字符串,字节,文件请求体:
public static final MediaType TEXT = MediaType.parse("text/plain; charset=utf-8"); public static final MediaType STREAM = MediaType.parse("application/octet-stream"); //构建字符串请求体 RequestBody body1 = RequestBody.create(TEXT, string); //构建字节请求体 RequestBody body2 = RequestBody.create(STREAM, byte); //构建文件请求体 RequestBody body3 = RequestBody.create(STREAM, file); //将请求体设置给请求方法内 Request request = new Request.Builder() .url(url) .post(xx)// xx表示body1,body2,body3中的某一个 .build(); 12345678910111213141516171819 12345678910111213141516171819构建表单请求体:
//构建表单RequestBody RequestBody formBody=new FormBody.Builder() .add("name","maplejaw") .add("age","18") ... .build(); 123456 123456构建分块表单请求体:
public static final MediaType STREAM = MediaType.parse("application/octet-stream"); //构建表单RequestBody RequestBody multipartBody=new MultipartBody.Builder() .setType(MultipartBody.FORM)//指明为 multipart/form-data 类型 .addFormDataPart("name","maplejaw") //添加表单数据 .addFormDataPart("age","20") //添加表单数据 .addFormDataPart("avatar","111.jpg",RequestBody.create(STREAM,file)) //添加文件,其中avatar为表单名,111.jpg为文件名。 .addPart(..)//该方法用于添加自定义Part,一般来说以上已经够用 .build(); 123456789 123456789关于Okhttp的基本使用已经介绍完毕,在大多数情况下,只要掌握以上使用方法,就足以应付关于网络请求的日常使用。 接下来,将从源码角度剖析OkHttp这个网络框架,如果你到目前为止还弄不清请求行、状态行、请求头、响应头、请求体和响应体这些基本概念的话,建议先阅读你应该知道的HTTP基础知识这篇文章。
所谓初始化OkHttpClient,无非就是对其进行相关配置,在了解OkHttpClient相关配置前,先认识一下以下一些基本的类。 Proxy 代理类,默认有三种代理模式DIRECT(直连),HTTP(http代理),SOCKS(socks代理),这三种模式,折腾过科学上网的或多或少都了解一点吧。 ProxySelector 代理选择类,默认不使用代理,即使用直连方式,当然,我们可以自定义配置,以指定URI使用某种代理,类似代理软件的PAC功能。 Protocol 协议类,用来表示使用的协议版本,比如http/1.0,http/1.1,spdy/3.1,h2等 Dns DNS这里就不用介绍了,用于根据主机名来查询对应的IP。 Cache 缓存类,内部使用了DiskLruCache来进行管理缓存,匹配缓存的机制不仅仅是根据url,而且会根据请求方法和请求头来验证是否可以响应缓存。此外,仅支持GET请求的缓存。 ConnectionSpec 连接规范,用于配置Socket连接层。对于HTTPS,还能配置安全传输层协议(TLS)版本和密码套件(CipherSuite) Interceptor 拦截器,该类的功能还是比较强大的,通过拦截器可以监视、重写和重试请求。拦截器的源码如下:
public interface Interceptor { Response intercept(Chain chain) throws IOException; interface Chain { Request request(); Response proceed(Request request) throws IOException; Connection connection(); } } 1234567891011 1234567891011拦截器的使用也非常简单,如果你只是想修改Request,那么就通过chain.request()获取原始的Request然后进行修改,比如添加cookie,代理等请求头,甚至还能修改请求方法和请求体。同理如果需要修改Response,则可以通过chain.proceed来获取Response后进行修改。此外我们还可以在其中进行打印日志等其他监视行为。 关于拦截器的使用例子如下:
//通过addInterceptor添加拦截器 OkHttpClient client = new OkHttpClient.Builder() ... .addInterceptor(new MyInterceptor()) .build(); //自定义拦截器 class MyInterceptor implements Interceptor { @Override public Response intercept(Interceptor.Chain chain) throws IOException { //获取原始Request Request request = chain.request(); //构建新的Request Request newRequest=request.newBuilder()//使用newBuilder,在原来request基础上修改,当然如果暴力点,可以完全重写Request。 .header("User-Agent", "OkHttp Example") ... .build(); //获取Response Response response = chain.proceed(newRequest); //构建新的Response Response newResponse=response.newBuilder() .header("Cache-Control", "max-age=60") .... .build(); return newResponse; } } 123456789101112131415161718192021222324252627282930313233 123456789101112131415161718192021222324252627282930313233CookieJar 用来管理cookie,可以根据url保存cookie,也可以通过url取出相应cookie。默认的不做cookie管理。该接口中有两个抽象方法,用户可以自己实现该接口以对cookie进行管理。
//保存cookie void saveFromResponse(HttpUrl url, List<Cookie> cookies); //根据Url导入保存的Cookie List<Cookie> loadForRequest(HttpUrl url); 12345 12345SocketFactory Socket工厂,通过createSocket来创建Socket。 SSLSocketFactory 安全套接层工厂,HTTPS相关,用于创建SSLSocket。一般配置HTTPS证书信任问题都需要从这里着手。对于不受信任的证书一般会提示javax.NET.ssl.SSLHandshakeException异常。配置信任所有证书的源码如下:
OkHttpClient client = new OkHttpClient.Builder() .sslSocketFactory(getTrustAllSSLSocketFactory())//配置SSL工厂 .build(); //获取信任所有证书的SSLSocketFactory public static SSLSocketFactory getTrustAllSSLSocketFactory() { // 信任所有证书 TrustManager[] trustAllCerts = new TrustManager[]{new X509TrustManager() { @Override public X509Certificate[] getAcceptedIssuers() { return new X509Certificate[]{}; } @Override public void checkClientTrusted(X509Certificate[] certs, String authType) { } @Override public void checkServerTrusted(X509Certificate[] certs, String authType) { } }}; try { SSLContext sslContext = SSLContext.getInstance("TLS"); sslContext.init(null, trustAllCerts, null); return sslContext.getSocketFactory(); } catch (Throwable ex) { } return null; } 123456789101112131415161718192021222324252627282930313233 123456789101112131415161718192021222324252627282930313233对于信任自证书的配置问题,可以参考Android Https相关完全解析 当OkHttp遇到Https。这篇文章。 CertificateChainCleaner 证书链清洁器,HTTPS相关,用于从Java的TLS API构建的原始数组中统计有效的证书链,然后清除跟TLS握手不相关的证书,提取可信任的证书以便可以受益于证书锁机制。 HostnameVerifier 主机名验证器,与HTTPS中的SSL相关,当握手时如果URL的主机名不是可识别的主机,就会要求进行主机名验证。
public interface HostnameVerifier { //通过session验证指定的主机名是否被允许 boolean verify(String hostname, SSLSession session); } 12345 12345CertificatePinner 证书锁,HTTPS相关,用于约束哪些证书可以被信任,可以防止一些已知或未知的中间证书机构带来的攻击行为。如果所有证书都不被信任将抛出SSLPeerUnverifiedException异常。 其中用于检查证书是否被信任的源码如下:
//检查证书是否被信任 public void check(String hostname, List<Certificate> peerCertificates) throws SSLPeerUnverifiedException { List<Pin> pins = findMatchingPins(hostname);//获取Pin(网址,hash算法,hash值) if (pins.isEmpty()) return; if (certificateChainCleaner != null) { //通过清洁器获取信任的证书 peerCertificates = certificateChainCleaner.clean(peerCertificates, hostname); } for (int c = 0, certsSize = peerCertificates.size(); c < certsSize; c++) { //对证书进行比对hash值,如果配对失败就抛出SSLPeerUnverifiedException异常 X509Certificate x509Certificate = (X509Certificate) peerCertificates.get(c); // Lazily compute the hashes for each certificate. ByteString sha1 = null; ByteString sha256 = null; for (int p = 0, pinsSize = pins.size(); p < pinsSize; p++) { Pin pin = pins.get(p); if (pin.hashAlgorithm.equals("sha256/")) { if (sha256 == null) sha256 = sha256(x509Certificate); if (pin.hash.equals(sha256)) return; // Success! } else if (pin.hashAlgorithm.equals("sha1/")) { if (sha1 == null) sha1 = sha1(x509Certificate); if (pin.hash.equals(sha1)) return; // Success! } else { throw new AssertionError(); } } } // ... } 123456789101112131415161718192021222324252627282930313233343536 123456789101112131415161718192021222324252627282930313233343536Authenticator 身份认证器,当连接提示未授权时,可以通过重新设置请求头来响应一个新的Request。状态码401表示远程服务器请求授权,407表示代理服务器请求授权。该认证器在需要时会被RetryAndFollowUpInterceptor触发。
public interface Authenticator { Authenticator NONE = new Authenticator() { @Override public Request authenticate(Route route, Response response) { return null; } }; Request authenticate(Route route, Response response) throws IOException; } 1234567891011 1234567891011关于授权的源码实现如下:
class MyAuthenticator implements Authenticator { @Override public Request authenticate(Route route, Response response) throws IOException { String credential = Credentials.basic(...) Request.Builder builder=response.request().newBuilder(); if(response.code()==401){ builder .header("Authorization", credential); }else if(response.code()==407){ builder .header("Proxy-Authorization", credential); } return builder.build(); } } 123456789101112131415161718 123456789101112131415161718ConnectionPool 连接池,用于管理HTTP和SPDY连接的复用以减少网络延迟,HTTP请求相同的Address时可以共享同一个连接。 Cache 见名之意,缓存类 Dispatcher 调度器,里面包含了线程池和三个队列(readyAsyncCalls:保存等待执行的异步请求;runningAsyncCalls:保存正在运行的异步请求;runningSyncCalls:保存正在执行的同步请求)。
//保存准备运行的异步请求(当运行请求超过限制数时会保存在此队列) private final Deque<AsyncCall> readyAsyncCalls = new ArrayDeque<>(); //保存正在运行的异步请求 private final Deque<AsyncCall> runningAsyncCalls = new ArrayDeque<>(); //保存正在运行的同步请求 private final Deque<RealCall> runningSyncCalls = new ArrayDeque<>(); 123456 123456当请求执行完毕后,调用finished将请求从runningAsyncCalls队列中移除,并且检查readyAsyncCalls以继续提交在队列中准备的请求。
//移除执行完毕的请求 synchronized void finished(AsyncCall call) { if (!runningAsyncCalls.remove(call)) throw new AssertionError("AsyncCall wasn't running!"); promoteCalls();//推进请求队列 } //推进请求 private void promoteCalls() { if (runningAsyncCalls.size() >= maxRequests) return; //容量已满,不提交新请求 if (readyAsyncCalls.isEmpty()) return; // 没有正在准备的请求,返回 //从readyAsyncCalls中循环取出AsyncCall直到达到容量上限 for (Iterator<AsyncCall> i = readyAsyncCalls.iterator(); i.hasNext(); ) { AsyncCall call = i.next(); if (runningCallsForHost(call) < maxRequestsPerHost) { i.remove(); runningAsyncCalls.add(call); executorService().execute(call); } if (runningAsyncCalls.size() >= maxRequests) return; // 达到上限后返回 } } 123456789101112131415161718192021222324 123456789101112131415161718192021222324提交异步请求通过enqueue进行:
synchronized void enqueue(AsyncCall call) { //检查容量大小 if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) { runningAsyncCalls.add(call);//加入队列 executorService().execute(call);//执行 } else { //超过容量大小后,加入准备队列中 readyAsyncCalls.add(call); } } 12345678910 12345678910对于同步请求,由于不需要提交到线程池中执行,因此只需通过executed将其加入runningSyncCalls队列中。
synchronized void executed(RealCall call) { runningSyncCalls.add(call); } 123 123阅读完上面的类后,对于OkHttpClient的构建就不会一脸蒙蔽了。OkHttpClient的Builder中的源码如下所示,可以了解一下默认值。当然这些值都可可以自行配置的。
public Builder() { //调度器 dispatcher = new Dispatcher(); //默认支持的协议列表 protocols = DEFAULT_PROTOCOLS; //默认的连接规范 connectionSpecs = DEFAULT_CONNECTION_SPECS; //默认的代理选择器(直连) proxySelector = ProxySelector.getDefault(); //默认不进行管理cookie cookieJar = CookieJar.NO_COOKIES; socketFactory = SocketFactory.getDefault(); //主机验证 hostnameVerifier = OkHostnameVerifier.INSTANCE; //证书锁,默认不开启 certificatePinner = CertificatePinner.DEFAULT; //默认不进行授权 proxyAuthenticator = Authenticator.NONE; authenticator = Authenticator.NONE; //初始化连接池 connectionPool = new ConnectionPool(); //DNS dns = Dns.SYSTEM; followSslRedirects = true; followRedirects = true; retryOnConnectionFailure = true; //超时时间 connectTimeout = 10_000; readTimeout = 10_000; writeTimeout = 10_000; } 1234567891011121314151617181920212223242526272829303132 1234567891011121314151617181920212223242526272829303132Request中主要有以下属性。
//请求的url private final HttpUrl url; //请求方法,GET,POST等 private final String method; //请求头 private final Headers headers; //请求体 private final RequestBody body; //该请求的标签 private final Object tag; 12345678910 12345678910HttpUrl 其中HttpUrl用于规范普通的url连接,并解析url的组成成分。 先来了解一下url的构成; scheme://username:password@host:port/pathSegment/pathSegment?queryParameter#fragment;
现通过如下例子来示范HttpUrl的使用: https://www.google.com/search?q=maplejaw 使用parse解析url字符串:
HttpUrl url = HttpUrl.parse("https://www.google.com/search?q=maplejaw"); 1 1通过构建者模式创建:
HttpUrl url = new HttpUrl.Builder() .scheme("https") .host("www.google.com") .addPathSegment("search") .addQueryParameter("q", "maplejaw") .build(); 123456 123456Headers Headers用于配置请求头,对于请求头配置大家一定不陌生吧,比如Content-Type,User-Agent和Cache-Control等等。 创建Headers也有两种方式。如下: of创建:传入的数组必须是偶数对,否则会抛出异常。
Headers.of("name1","value1","name2","value2",.....); 1 1构建者模式创建:
Headers mHeaders=new Headers.Builder() .set("name1","value1")//set表示name1是唯一的,会覆盖掉已经存在的 .add("name2","value2")//add不会覆盖已经存在的头,可以存在多个 .build(); 1234 1234Headers内部使用了一个数组进行保存private final String[] namesAndValues;,你可能会想,为什么不用map呢?因为map有一个致命的缺点,它的key是唯一的。 但是用数组取值方法吗?可以很严肃的告诉你,非常方便,内部已经封装好。
public String name(int index) { return namesAndValues[index * 2]; } public String value(int index) { return namesAndValues[index * 2 + 1]; } 12345678 12345678最后,通过toString转为字符串,以便写入请求头:
@Override public String toString() { StringBuilder result = new StringBuilder(); for (int i = 0, size = size(); i < size; i++) { result.append(name(i)).append(": ").append(value(i)).append("\n"); } return result.toString(); } 12345678 12345678RequestBody RequestBody也就是请求体了,对于请求体的创建在前面已经介绍过了,这里就仅仅看下源码:
public abstract class RequestBody { //返回该请求体的 Content-Type public abstract MediaType contentType(); //返回请求体的大小(字节数),-1表示未知 public long contentLength() throws IOException { return -1; } //写入内容,BufferedSink是Okio中的类,类似于java中的OutputStream public abstract void writeTo(BufferedSink sink) throws IOException; ... } 12345678910111213141516171819 12345678910111213141516171819MediaType这个类主要用于指定请求体的Content-Type的MIME类型,此外还能指定字符集,默认为utf-8。 创建MediaType如下般简单,;左边为MIME类型,右边为字符集编码。
MediaType.parse("text/plain; charset=utf-8") 1 1前面我们提到了表单和分块表单类型的请求体,现在来看一下对应的核心源码: FormBody:
public final class FormBody extends RequestBody { private static final MediaType CONTENT_TYPE = MediaType.parse("application/x-www-form-urlencoded"); @Override public MediaType contentType() { return CONTENT_TYPE; } @Override public long contentLength() { return writeOrCountBytes(null, true); } @Override public void writeTo(BufferedSink sink) throws IOException { writeOrCountBytes(sink, false); } ... } 1234567891011121314151617181920 1234567891011121314151617181920可以看出Content_Type为application/x-www-form-urlencoded,且通过writeOrCountBytes来计算请求体大小和将请求体写入BufferedSink。
private long writeOrCountBytes(BufferedSink sink, boolean countBytes) { long byteCount = 0L; Buffer buffer; if (countBytes) {//计算大小 buffer = new Buffer(); } else { buffer = sink.buffer(); } //写入表单内容(name1=value1&name2=value2&...) for (int i = 0, size = encodedNames.size(); i < size; i++) { if (i > 0) buffer.writeByte('&'); buffer.writeUtf8(encodedNames.get(i)); buffer.writeByte('='); buffer.writeUtf8(encodedValues.get(i)); } if (countBytes) {//如果只是计算的话,请清空缓存 byteCount = buffer.size(); buffer.clear(); } return byteCount; } 12345678910111213141516171819202122232425 12345678910111213141516171819202122232425MultipartBody和FormBody大体上相同,主要区别在于writeOrCountBytes方法,分块表单主要是将每个块的大小进行累加来求出请求体大小,如果其中有一个块没有指定大小,就会返回-1。所以分块表单中如果包含文件,默认是无法计算出大小的,除非你自己给文件的RequestBody指定contentLength。
private long writeOrCountBytes(BufferedSink sink, boolean countBytes) throws IOException { long byteCount = 0L; Buffer byteCountBuffer = null; if (countBytes) { //如果是计算大小的话,就new个 sink = byteCountBuffer = new Buffer(); } //循环块 for (int p = 0, partCount = parts.size(); p < partCount; p++) { Part part = parts.get(p); //获取每个块的头 Headers headers = part.headers; //获取每个块的请求体 RequestBody body = part.body; //写 --xxxxxxxxxx 边界 sink.write(DASHDASH); sink.write(boundary); sink.write(CRLF); //写块的头 if (headers != null) { for (int h = 0, headerCount = headers.size(); h < headerCount; h++) { sink.writeUtf8(headers.name(h)) .write(COLONSPACE) .writeUtf8(headers.value(h)) .write(CRLF); } } //写块的Content_Type MediaType contentType = body.contentType(); if (contentType != null) { sink.writeUtf8("Content-Type: ") .writeUtf8(contentType.toString()) .write(CRLF); } //写块的大小 long contentLength = body.contentLength(); if (contentLength != -1) { sink.writeUtf8("Content-Length: ") .writeDecimalLong(contentLength) .write(CRLF); } else if (countBytes) { // We can't measure the body's size without the sizes of its components. //如果有个块没有这名大小,就返回-1. byteCountBuffer.clear(); return -1L; } sink.write(CRLF); //如果是计算大小就累加,否则写入BufferedSink if (countBytes) { byteCount += contentLength; } else { body.writeTo(sink); } sink.write(CRLF); } //写 --xxxxxxxxxx-- 结束边界 sink.write(DASHDASH); sink.write(boundary); sink.write(DASHDASH); sink.write(CRLF); if (countBytes) { byteCount += byteCountBuffer.size(); byteCountBuffer.clear(); } return byteCount; } 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778为什么先介绍处理Response部分而不是newCall部分,是因为Request和Response相呼应,理解起来更加连贯一点。 Response类属性如下:
private final Request request;//获取到此次Response的最终Request(所谓最终Request是因为Reque可能被拦截器处理过) private final Protocol protocol;//协议版本 private final int code;//响应码 private final String message; //响应消息 private final Handshake handshake;//TLS握手记录,保存了客户端和服务器的证书,TLS版本,密码套件等 private final Headers headers;//响应头 private final ResponseBody body;//响应体 private final Response networkResponse;//从网络返回的Response,如果没有从网络读取,networkResponse值为Null private final Response cacheResponse;//从缓存读取的Response,如果没有从缓存中取,为Null private final Response priorResponse;//之前的Response,一般发生重定向或者重试时有值 private final long sentRequestAtMillis;//记录发送Request的时间戳(如果响应来自缓存,返回的时间戳为原始请求的时间) private final long receivedResponseAtMillis;//记录接收Response的时间戳(如果响应来自缓存,返回原始的响应时间) 12345678910111213 12345678910111213ResponseBody是一次性的流,所以不能重复读取,此外务必记得要关闭流。 ResponseBody中常用的读取方法有如下几种:
//获取InputStream,读取完后手动进行close,一般用于下载文件中 public final InputStream byteStream() { return source().inputStream(); } //获取字节,此方法无需close,因为已经写入内存中 public final byte[] bytes() throws IOException { long contentLength = contentLength(); if (contentLength > Integer.MAX_VALUE) { throw new IOException("Cannot buffer entire body for content length: " + contentLength); } BufferedSource source = source(); byte[] bytes; try { bytes = source.readByteArray(); } finally { Util.closeQuietly(source); } if (contentLength != -1 && contentLength != bytes.length) { throw new IOException("Content-Length and stream length disagree"); } return bytes; } //获取String,此方法无需Close,已经写入内存中 public final String string() throws IOException { return new String(bytes(), charset().name()); } 123456789101112131415161718192021222324252627282930 123456789101112131415161718192021222324252627282930现在再回到OkHttpClient这个类,如果你看过我之前关于Retrofit源码解读,那你一定知道OkHttpClient实现了Call.Factory接口,Call.Factory的作用之前已经介绍过了,抽象方法为Call newCall(Request request);,用于将Request转换为Call对象。 核心源码实现如下:
@Override public Call newCall(Request request) { return new RealCall(this, request); } 1234 1234我们知道Call只是一个接口,而RealCall即为Call的一个实现。而我们最关心的无法在于两个点:同步调用,异步调用。 同步调用的源码如下:
@Override public Response execute() throws IOException { synchronized (this) { if (executed) throw new IllegalStateException("Already Executed"); executed = true; } try { //加入Dispatcher中的runningSyncCalls队列 client.dispatcher().executed(this); //通过拦截链获取Response Response result = getResponseWithInterceptorChain(); if (result == null) throw new IOException("Canceled"); return result; } finally { //从runningSyncCalls队列中移除 client.dispatcher().finished(this); } } 1234567891011121314151617 1234567891011121314151617可以看出,核心的源码在getResponseWithInterceptorChain中,通过责任链模式进行添加拦截器。
private Response getResponseWithInterceptorChain() throws IOException { //构建全栈拦截器 List<Interceptor> interceptors = new ArrayList<>(); interceptors.addAll(client.interceptors());//自定义拦截器 interceptors.add(retryAndFollowUpInterceptor);//重试拦截器 interceptors.add(new BridgeInterceptor(client.cookieJar()));//桥接拦截器 interceptors.add(new CacheInterceptor(client.internalCache()));//缓存拦截器 interceptors.add(new ConnectInterceptor(client));//连接拦截器 if (!retryAndFollowUpInterceptor.isForWebSocket()) { interceptors.addAll(client.networkInterceptors());//用户预定义的网络拦截器 } interceptors.add(new CallServerInterceptor( retryAndFollowUpInterceptor.isForWebSocket()));//调用服务拦截器 //内部通过责任链模式来使用拦截器 Interceptor.Chain chain = new RealInterceptorChain( interceptors, null, null, null, 0, originalRequest); return chain.proceed(originalRequest);//获取Response } 123456789101112131415161718192021 123456789101112131415161718192021RealInterceptorChain内部的责任链调用如下,可以看出,拦截器会依次对Chain进行处理。
public Response proceed(Request request, StreamAllocation streamAllocation, HttpStream httpStream, Connection connection) throws IOException { ... //获取Chain RealInterceptorChain next = new RealInterceptorChain( interceptors, streamAllocation, httpStream, connection, index + 1, request); //获取当前拦截器 Interceptor interceptor = interceptors.get(index); //拦截器通过Chain获取Response Response response = interceptor.intercept(next); .... return response; } 1234567891011121314 1234567891011121314异步调用和同步调用基本相同,也是通过getResponseWithInterceptorChain来获取Response,只不过该操作是放在AsyncCall(实现了Runable接口)中提交给dispatcher执行的。
在了解一系列的拦截器前,我们再来认识一下其他几个类。 HttpStream 一个接口,源码如下。对应的实现有Http1xStream、Http2xStream。分别对应HTTP/1.1、HTTP/2和SPDY协议。我们可以大约知道,通过writeRequestHeaders开始写入请求头到服务器,createRequestBody用于获取写入流来写入请求体。readResponseHeaders用于读取响应头,openResponseBody用于打开一个响应体。关于相应实现的源码这里就不分析了,比较简单,无非就是读写操作。
public interface HttpStream { int DISCARD_STREAM_TIMEOUT_MILLIS = 100; //返回一个output stream(如果RequestBody可以转为流) Sink createRequestBody(Request request, long contentLength); //写请求头 void writeRequestHeaders(Request request) throws IOException; //Flush Request void finishRequest() throws IOException; //读响应头 Response.Builder readResponseHeaders() throws IOException; //返回一个ResponseBody ResponseBody openResponseBody(Response response) throws IOException; void cancel(); } 123456789101112131415161718192021 123456789101112131415161718192021StreamAllocation 流分配器,该类用于协调连接、流和请求三者之间的关系。通过调用newStream可以获取一个HttpStream实现。
public HttpStream newStream(OkHttpClient client, boolean doExtensiveHealthChecks) { int connectTimeout = client.connectTimeoutMillis(); int readTimeout = client.readTimeoutMillis(); int writeTimeout = client.writeTimeoutMillis(); boolean connectionRetryEnabled = client.retryOnConnectionFailure(); try { //获取连接 RealConnection resultConnection = findHealthyConnection(connectTimeout, readTimeout, writeTimeout, connectionRetryEnabled, doExtensiveHealthChecks); //初始化HttpStream HttpStream resultStream; if (resultConnection.framedConnection != null) { //Http2xStream resultStream = new Http2xStream(client, this, resultConnection.framedConnection); } else { //Http1xStream resultConnection.socket().setSoTimeout(readTimeout); resultConnection.source.timeout().timeout(readTimeout, MILLISECONDS); resultConnection.sink.timeout().timeout(writeTimeout, MILLISECONDS); resultStream = new Http1xStream( client, this, resultConnection.source, resultConnection.sink); } synchronized (connectionPool) { stream = resultStream; return resultStream; } } catch (IOException e) { throw new RouteException(e); } } 123456789101112131415161718192021222324252627282930313233 123456789101112131415161718192021222324252627282930313233获取RealConnection的流程是这样的,首先尝试从连接池中获取可复用的连接,如果获取不到,才会初始化RealConnection开启一个新连接。
在了解了HttpStream和StreamAllocation后,现在来分析getResponseWithInterceptorChain中的所有的拦截器。 RetryAndFollowUpInterceptor 重试与重定向拦截器,用来实现重试和重定向功能,核心实现如下面源码, 不难发现,内部通过while(true)死循环来进行重试获取Response(有重试上限,超过会抛出异常)。followUpRequest主要用来根据响应码来判断属于哪种行为触发的重试和重定向(比如未授权,超时,重定向等),然后构建响应的Request进行下一次请求。当然,如果没有触发重新请求就会直接返回Response。
@Override public Response intercept(Chain chain) throws IOException { Request request = chain.request(); //初始化流分配器 streamAllocation = new StreamAllocation( client.connectionPool(), createAddress(request.url())); int followUpCount = 0; Response priorResponse = null; while (true) {//死循环 //.. //省略了部分源码 Response response = null; boolean releaseConnection = true; try { response = ((RealInterceptorChain) chain).proceed(request, streamAllocation, null, null); releaseConnection = false; } catch (Exception e) { //.. //省略了部分源码 releaseConnection = false; continue; } finally { if (releaseConnection) { streamAllocation.streamFailed(null); streamAllocation.release(); } } //将上次的请求放入priorResponse中 if (priorResponse != null) { response = response.newBuilder() .priorResponse(priorResponse.newBuilder() .body(null) .build()) .build(); } //检查是否触发重定向重试等条件,并返回Request Request followUp = followUpRequest(response); if (followUp == null) {//null表示无需重试 if (!forWebSocket) { streamAllocation.release(); } return response;//返回response } //.. //省略了部分源码 request = followUp; priorResponse = response; //while循环进行下次请求 } } 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061BridgeInterceptor 桥接拦截器,用于完善请求头,比如Content-Type、Content-Length、Host、Connection、Accept-Encoding、User-Agent等等,这些请求头不用用户一一设置,如果用户没有设置该库会检查并自动完善。此外,这里会进行加载和回调cookie。
@Override public Response intercept(Chain chain) throws IOException { Request userRequest = chain.request(); Request.Builder requestBuilder = userRequest.newBuilder(); RequestBody body = userRequest.body(); //将用户没有写入请求头的内容自动补充进去,比如Content-Type、Content-Length、Host、Connection、Accept-Encoding、User-Agent等等 if (body != null) { MediaType contentType = body.contentType(); if (contentType != null) { requestBuilder.header("Content-Type", contentType.toString()); } //.. } //获取cookie添加到请求头中 List<Cookie> cookies = cookieJar.loadForRequest(userRequest.url()); if (!cookies.isEmpty()) { requestBuilder.header("Cookie", cookieHeader(cookies)); } //... Response networkResponse = chain.proceed(requestBuilder.build()); //将响应cookie回调出去供用户保存 HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers()); Response.Builder responseBuilder = networkResponse.newBuilder() .request(userRequest); //... //省略了部分源码 responseBuilder.headers(strippedHeaders); responseBuilder.body(new RealResponseBody(strippedHeaders, Okio.buffer(responseBody))); return responseBuilder.build(); } 1234567891011121314151617181920212223242526272829303132333435 1234567891011121314151617181920212223242526272829303132333435CacheInterceptor 缓存拦截器,首先根据Request中获取缓存的Response,然后根据用于设置的缓存策略来进一步判断缓存的Response是否可用以及是否发送网络请求(CacheControl.FORCE_CACHE因为不会发送网络请求,所以networkRequest一定为空)。如果从网络中读取,此时再次根据缓存策略来决定是否缓存响应。 配置缓存策略的方法如下:
Request request = new Request.Builder() .cacheControl(CacheControl.FORCE_NETWORK) .url("http://publicobject.com/helloworld.txt") .build(); 1234 1234拦截器的核心实现如下:
@Override public Response intercept(Chain chain) throws IOException { //通过Request从缓存中获取Response Response cacheCandidate = cache != null ? cache.get(chain.request()) : null; long now = System.currentTimeMillis(); //根据请求头获取用户指定的缓存策略,并根据缓存策略来获取networkRequest,cacheResponse。cacheResponse为null表示当前策略就算有缓存也不读缓存 CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get(); Request networkRequest = strategy.networkRequest;//表示发往网络的request,不请求网络应为null Response cacheResponse = strategy.cacheResponse;//返回从缓存中读取的response if (cache != null) { cache.trackResponse(strategy); } if (cacheCandidate != null && cacheResponse == null) { //cacheResponse表示不读缓存,那么cacheCandidate不可用,关闭它 closeQuietly(cacheCandidate.body()); } //.. //省略了部分源码 //返回从缓存中读取的Response if (networkRequest == null) { return cacheResponse.newBuilder() .cacheResponse(stripBody(cacheResponse)) .build(); } Response networkResponse = null; //.. //省略了部分源码 //获取网络Response networkResponse = chain.proceed(networkRequest); Response response = networkResponse.newBuilder() .cacheResponse(stripBody(cacheResponse)) .networkResponse(stripBody(networkResponse)) .build(); if (HttpHeaders.hasBody(response)) { //如果可以缓存(用户允许,响应也允许)就进行缓存到本地 CacheRequest cacheRequest = maybeCache(response, networkResponse.request(), cache); response = cacheWritingResponse(cacheRequest, response); } return response; } 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152ConnectInterceptor 连接拦截器,用于打开一个连接到远程服务器。说白了就是通过StreamAllocation获取HttpStream和RealConnection对象,以便后续读写。
@Override public Response intercept(Chain chain) throws IOException { RealInterceptorChain realChain = (RealInterceptorChain) chain; Request request = realChain.request(); StreamAllocation streamAllocation = realChain.streamAllocation(); boolean doExtensiveHealthChecks = !request.method().equals("GET"); //获取HttpStream HttpStream httpStream = streamAllocation.newStream(client, doExtensiveHealthChecks); //获取RealConnection RealConnection connection = streamAllocation.connection(); return realChain.proceed(request, streamAllocation, httpStream, connection); } 12345678910111213 12345678910111213CallServerInterceptor 调用服务拦截器,拦截链中的最后一个拦截器,通过网络与调用服务器。通过HttpStream依次次进行写请求头、请求头(可选)、读响应头、读响应体。
@Override public Response intercept(Chain chain) throws IOException { HttpStream httpStream = ((RealInterceptorChain) chain).httpStream(); StreamAllocation streamAllocation = ((RealInterceptorChain) chain).streamAllocation(); Request request = chain.request(); long sentRequestMillis = System.currentTimeMillis(); //写请求头 httpStream.writeRequestHeaders(request); if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) { //写请求体 Sink requestBodyOut = httpStream.createRequestBody(request, request.body().contentLength()); BufferedSink bufferedRequestBody = Okio.buffer(requestBodyOut); request.body().writeTo(bufferedRequestBody); bufferedRequestBody.close(); } httpStream.finishRequest(); //获取Response。 Response response = httpStream.readResponseHeaders() .request(request) .handshake(streamAllocation.connection().handshake()) .sentRequestAtMillis(sentRequestMillis) .receivedResponseAtMillis(System.currentTimeMillis()) .build(); if (!forWebSocket || response.code() != 101) { response = response.newBuilder() .body(httpStream.openResponseBody(response)) .build(); } //... return response; } 12345678910111213141516171819202122232425262728293031323334353637 12345678910111213141516171819202122232425262728293031323334353637在网上发现一张关于OkHttp的完整工作流程图,画的非常好,偷了个懒直接拿来用了,感谢作者。图片出自http://blog.piasy.com/2016/07/11/Understand-OkHttp/
本期解读到此结束,如有错误之处,欢迎指出。下一期,RxJava。