package cn.itcast.spark.day5
import org.apache.spark.storage.StorageLevel
import org.apache.spark.{HashPartitioner, SparkConf}
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
/**
* Created by root on 2016/5/21.
*/
object KafkaWordCount {
val updateFunc = (iter: Iterator[(String, Seq[Int], Option[Int])]) => {
//iter.flatMap(it=>Some(it._2.sum + it._3.getOrElse(0)).map(x=>(it._1,x)))
iter.flatMap { case (x, y, z) => Some(y.sum + z.getOrElse(0)).map(i => (x, i)) }
}
def main(args: Array[String]) {
LoggerLevels.setStreamingLogLevels()
val Array(zkQuorum, group, topics, numThreads) = args
val sparkConf = new SparkConf().setAppName("KafkaWordCount").setMaster("local[2]")
val ssc = new StreamingContext(sparkConf, Seconds(5))
ssc.checkpoint("c://ck2")
//"alog-2016-04-16,alog-2016-04-17,alog-2016-04-18"
//"Array((alog-2016-04-16, 2), (alog-2016-04-17, 2), (alog-2016-04-18, 2))"
val topicMap = topics.split(",").map((_, numThreads.toInt)).toMap
val data = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap, StorageLevel.MEMORY_AND_DISK_SER)
val words = data.map(_._2).flatMap(_.split(" "))
val wordCounts = words.map((_, 1)).updateStateByKey(updateFunc, new HashPartitioner(ssc.sparkContext.defaultParallelism), true)
ssc.start()
ssc.awaitTermination()
}
}