ICP算法

xiaoxiao2021-02-28  103

1 经典ICP

  ICP的目的很简单,就是求解两堆点云之间的变换关系。怎么做呢?思路很自然,既然不知道R和t(针对刚体运动),那我们就假设为未知量呗,然后通过某些方法求解。下面我们来看看具体怎么求的~没办法,要把问题描述清楚,数学是少不了的了。假设有两堆点云,分别记为两个集合 X=x 1 ,x 2 ,...,x m   Y=y 1 ,y 2 ,...,y m   (m并不总是等于n)。然后呢,我们不失一般性的,假设两个点云之间的变换为R(旋转变换)和t(平移变换),这两个就是我们要求的东西啦~那我们将求解这个问题描述成最小化均方误差:   

e(X,Y)= i=1 m (Rx i +ty i ) 2     经典的ICP方法对上面的优化问题的处理思路如下:   (1)初始化 R  t    确定初始的 R  t  的方法很多,如果什么方法都不知道,那随便赋一个 R  t  ,然后就迭代的算呀。随便给一个值从原理上来说也可以得到最终的一个结果呀,但是准不准就不知道了。相信有基本的优化概念的人都知道,初始值的选取很重要,如果初始值选的不好很容易收敛到一个局部最优解,然后局部最优解好不好那就另说了。ICP发展了这么多年了,当然有很多的方法来估计初始的R和t了,像PCL给的SampleConsensusInitalAlignment函数以及TransformationEstimationSVD函数都可以得到较好的初始估计。   (2)迭代   得到初始的估计后,接下来的步骤就顺理成章了:对于 X  中的每一个点用当前的 R  t  Y  中找最近的点(比如用欧式距离),然后这两个点就成了一对了~就这样,对所有的点都这么做一次,然后我们就得到了所有的匹配对了~然后呢,用每一对的坐标列一个方程,就得到一系列的方程。然后就求解最优的R和t最小化上面的误差。如此循环往复。

2 ICP变种

  除了经典的ICP方法外,还有一些变种,如point-to-point的,point-to-plane的以及plane-to-plane的,那么这三种方法到底是啥呢?   其实很简单,就是上面的误差函数的定义不一样而已。在上面讲经典ICP的时候,求和的每一项不就是 X  中的每一个点到 Y  中的每一个点的距离吗?那就是point-to-point了,那么将求和的每一项变成 X  中的每一个点到 Y  中的平面的距离,那就是point-to-plane了呀~类似的,如果把求和的每一项变成X中的平面到 Y  中的平面的距离,那就是plane-to-plane了。我们说了这么久的平面,那么平面到时是怎么定义的呢?   point-to-plane的误差函数定义为: M opt =argmin R,t  i ((Rx i +ty i )n i ) 

参考:http://www.cnblogs.com/jian-li/articles/4945676.html

转载请注明原文地址: https://www.6miu.com/read-37041.html

最新回复(0)