pandas 中的Axis(轴)的理解

xiaoxiao2021-03-01  2

python中的axis究竟是如何定义的呢?他们究竟代表是DataFrame的行还是列?考虑以下代码:

>>>df = pd.DataFrame([[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]], columns=["col1", "col2", "col3", "col4"]) >>>df    col1  col2  col3  col4     0     1     1     1     1     1     2     2     2     2     2     3     3     3     3 -----------------------------------------------------------------------------------------------------------------------------------

调用df.mean(axis=1),我们将得到按行计算的均值

>>> df.mean(axis=1) 0    1 1    2 2    3

-----------------------------------------------------------------------------------------------------------------------------------

然而,如果我们调用 df.drop((name, axis=1),我们实际上删掉了一列,而不是一行:

>>> df.drop("col4", axis=1)     col1  col2  col3 0     1     1     1 1     2     2     2 2     3     3     3 -----------------------------------------------------------------------------------------------------------------------------------

注意,这里drop()函数需要指定维度,如果不指定的话,会报错,如下所示:

那么如何理解在pandas、numpy、scipy中axis参数的真实含义呢

根据stackoverflow答主解释,axis=0指的是逐行,axis=1指的是逐列。

其实问题理解axis有问题,df.mean其实是在每一行上取所有列的均值,而不是保留每一列的均值。也许简单的来记就是axis=0代表往跨行(down),而axis=1代表跨列(across),作为方法动作的副词(译者注)。

换句话说:

使用0值表示沿着每一列或行标签\索引值向下执行方法使用1值表示沿着每一行或者列标签模向执行对应的方法

下图代表在DataFrame当中axis为0和1时分别代表的含义:

这里是理解的关键

根据结果:  mean(axis=0)计算的是每一列平均值,  mean(axis=1)计算的是每一行平均值。  drop(0,axis=0)删除行,  drop([‘col1’],axis=1)删除列。

转载请注明原文地址: https://www.6miu.com/read-3650077.html

最新回复(0)