(一)基于 C/C++ 神经机器翻译
1.1 EUREKA-MangoNMT
https://github.com/jiajunzhangnlp/EUREKA-MangoNMT
中科院-张家俊
1.2 Marian
https://github.com/marian-nmt/marian
1.3 Zoph_RNN
https://github.com/isi-nlp/Zoph_RNN
支持多个GPU并行计算
1.4 Mantidae
https://github.com/duyvuleo/Mantidae
1.5 N3LP
https://github.com/hassyGo/N3LP
(二)基于 Theano 神经机器翻译
2.1 DCNMT
https://github.com/swordyork/dcnmt
2.2 dl4mt-tutorial
https://github.com/nyu-dl/dl4mt-tutorial
2.3 dl4mt-c2c
https://github.com/nyu-dl/dl4mt-c2c
2.4 HNMT
https://github.com/robertostling/hnmt
2.5 Nematus
https://github.com/rsennrich/nematus
2.6 neuralmt
https://github.com/zomux/neuralmt
2.7 NMT
https://github.com/tuzhaopeng/NMT
2.8 nmtpy
https://github.com/lium-lst/nmtpy
2.9 RNNsearch
https://github.com/XMUNLP/RNNsearch
2.10 SGNMT
https://github.com/ucam-smt/sgnmt
2.11 THUMT
https://github.com/thumt/THUMT
清华大学nlp实现
2.12 GroundHoghttps://github.com/lisa-groundhog/GroundHog
Bengio研究组实现
2.13 NMT-Coveragehttps://github.com/tuzhaopeng/NMT-Coverage 华为诺亚方舟实验室李航团队,实现了基于覆盖率的神经机器翻译模型
2.13 NMT-Coveragehttps://github.com/tuzhaopeng/NMT-Coverage
华为诺亚方舟实验室李航团队,实现了基于覆盖率的神经机器翻译模型
2.14 blockshttps://github.com/mila-udem/blocks
GroundHog 升级版
(三)基于 TensorFlow神经机器翻译
3.1 byteNet-tensorflow
https://github.com/paarthneekhara/byteNet-tensorflow
3.2 bytenet_translation
https://github.com/Kyubyong/bytenet_translation
3.3 Neural Monkey
https://github.com/ufal/neuralmonkey
3.4 seq2seq
https://github.com/eske/seq2seq
3.5 Tensor2Tensor
https://github.com/tensorflow/tensor2tensor
3.6 tf-seq2seq
https://github.com/google/seq2seq
google提出的seq2seq模型
(四)基于 Keras神经机器翻译
4.1 Keras seq2seq
https://github.com/farizrahman4u/seq2seq
4.2 NMT-Keras
https://github.com/lvapeab/nmt-keras
(五)基于 Chainer神经机器翻译
5.1 chainn
https://github.com/philip30/chainn
5.2 KyotoNMT
https://github.com/fabiencro/knmt
5.3 attention_is_all_you_need
https://github.com/soskek/attention_is_all_you_need
实现了Google完全基于attention的模型
(六)基于 Caffe2 神经机器翻译
6.1 seq2seq
https://github.com/caffe2/caffe2/blob/master/caffe2/python/examples/seq2seq.py(七)基于 Torch神经机器翻译
7.1 nmt-android
https://github.com/harvardnlp/nmt-android
安卓手机NMT
7.2 seq2seq-attn
https://github.com/harvardnlp/seq2seq-attn
7.3 OpenNMT
https://github.com/OpenNMT/OpenNMT
哈佛大学nlp组实现
7.4 fairseq
https://github.com/facebookresearch/fairseq
Facebook : cnn+attention 实现
(八)基于 PyTorch神经机器翻译
8.1 OpenNMT-py
https://github.com/OpenNMT/OpenNMT-py
(九)基于 DyNet 神经机器翻译
9.1 dynmt-py
https://github.com/roeeaharoni/dynmt-py
9.2 lamtram
https://github.com/neubig/lamtram
9.3 mantis
https://github.com/trevorcohn/mantis
9.4 NMTKit
https://github.com/odashi/nmtkit
9.5 xnmt
https://github.com/neulab/xnmt
(十)基于 MXNet 神经机器翻译
10.1 MXNMT
https://github.com/magic282/MXNMT
10.2 sockeye
https://github.com/awslabs/sockeye
(十一)基于 matlab 神经机器翻译
11.1 nmt.matlab
https://github.com/lmthang/nmt.matlab
11.2 nmt_stanford_nlp
http://nlp.stanford.edu/projects/nmt/
斯坦福大学nlp组实现