DES全称为Data Encryption Standard,即数据加密标准,是一种使用密钥加密的块算法,1977年被美国联邦政府的国家标准局确定为联邦资料处理标准(FIPS),并授权在非密级政府通信中使用,随后该算法在国际上广泛流传开来。
DES的核心原理是基于XOR数学运算。我们知道异或运算的一个基本性质 A XOR B = C ;C XOR B =A。这个特性和加解密过程非常相似 A用秘钥B加密加密得到C ,C用秘钥B解密得到A。
DES是基于数据块的加密。它将待加密数据以64bit为单位拆分为若干数据块。然后再进行两重迭代: 外层迭代是数据块之间的迭代,迭代的方式有ECB、CBC等,本文重点介绍CBC。 内层迭代是通过Feistel网络来实现。
基于CBC的数据块的加密和解密迭代过程如上图所示,每一个数据块的加密和解密过程都依赖上一个数据块。一旦有一个数据块出现错误将会出现“雪崩效应”。
如上图所示Feistel网络实现对于单个数据块的加密。Feistel迭代开始前将64bit数据块拆分为左右32比bit,然后进行如上图所示的迭代过程,总共迭代16次。每一次迭代的子密钥是不同的。每次迭代过程都是对右半部分数据块采用轮函数处理(加密)。所以这里涉及到两个问题:1.子密钥如何产生,2.轮函数如何实现
子密钥的生成如上图所示,用户输入的是64bit的密钥(8个字符)首先做一次ip置换将64bit的密钥置换为56bit的密钥。56bit的密钥再进行一次PC-1置换后拆分为左右28bit的密钥。进行16轮迭代,产生16个子密钥。每次迭代将左右28bit密钥做左移1位的运算,然后再进行 PC-2的置换,组合再一起后得到ki。
轮函数的实现主要是进行了 ebox的置换处理和sbox的置换处理: 1. ebox 将32bit 的R block 通过扩展置换为48bit的R block,然后与当前迭代的子密钥Ki做XOR 运算,最后拆分为6*8的矩阵。 2. sbox 取 R block每一行的6个bit做运算,得到 sbox的坐标,取到sbox的值后做位移运算得到加密后的新的R block的行,迭代8此后得到最后的加密结果。
总体来说子密钥的生成的实现逻辑和轮函数的实现逻辑较为复杂具体可以参考我的代码实现。
Demo版的实现参考了pyDES库,把里面的实现做了一下逻辑抽离等重构操作。只实现了DES-CBC
from re import findall """ DES-CBC算法 的DEMO coding by liuwei 2018.3.23 """ class DES: # Permutation and translation tables for DES __pc1 = [ 56, 48, 40, 32, 24, 16, 8, 0, 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35, 62, 54, 46, 38, 30, 22, 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 60, 52, 44, 36, 28, 20, 12, 4, 27, 19, 11, 3 ] # number left rotations of pc1 __left_rotations = [ 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 ] # permuted choice key (table 2) __pc2 = [ 13, 16, 10, 23, 0, 4, 2, 27, 14, 5, 20, 9, 22, 18, 11, 3, 25, 7, 15, 6, 26, 19, 12, 1, 40, 51, 30, 36, 46, 54, 29, 39, 50, 44, 32, 47, 43, 48, 38, 55, 33, 52, 45, 41, 49, 35, 28, 31 ] # initial permutation IP __ip = [57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7, 56, 48, 40, 32, 24, 16, 8, 0, 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, 62, 54, 46, 38, 30, 22, 14, 6 ] # Expansion table for turning 32 bit blocks into 48 bits __expansion_table = [ 31, 0, 1, 2, 3, 4, 3, 4, 5, 6, 7, 8, 7, 8, 9, 10, 11, 12, 11, 12, 13, 14, 15, 16, 15, 16, 17, 18, 19, 20, 19, 20, 21, 22, 23, 24, 23, 24, 25, 26, 27, 28, 27, 28, 29, 30, 31, 0 ] # The (in)famous S-boxes __sbox = [ # S1 [14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8, 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0, 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13], # S2 [15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5, 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15, 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9], # S3 [10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1, 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7, 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12], # S4 [7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9, 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4, 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14], # S5 [2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9, 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6, 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14, 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3], # S6 [12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8, 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6, 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13], # S7 [4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1, 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6, 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2, 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12], # S8 [13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7, 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2, 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8, 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11], ] # 32-bit permutation function P used on the output of the S-boxes __p = [ 15, 6, 19, 20, 28, 11, 27, 16, 0, 14, 22, 25, 4, 17, 30, 9, 1, 7, 23, 13, 31, 26, 2, 8, 18, 12, 29, 5, 21, 10, 3, 24 ] # final permutation IP^-1 __fp = [ 39, 7, 47, 15, 55, 23, 63, 31, 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29, 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27, 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25, 32, 0, 40, 8, 48, 16, 56, 24 ] __inter_round = range(16) def __init__(self, key, iter_mod, IV, pad='\0', ): # 64bit字符串key,转换为56bit key self.__key = self.__permutate(self.__pc1, string_to_bit_lst(key)) self.__pad = pad self.__iter_mod = iter_mod self.__IV = IV # 每个block做16轮迭代,为没轮迭代创建SubKey self.Kn = self.__create_sub_keys() def __create_sub_keys(self): """56bit key 转 16个48bit sub key""" # 初始化subkey,16轮迭代16个48bit的subkey Kn = [[0] * 48] * len(self.__inter_round) # 56bit key分割作为左右两半 L = self.__key[:28] R = self.__key[28:] # 循环左移,每次迭代循环左移的次数不一样,由 __left_rotations决定 for round in self.__inter_round: # 执行循环左移,移动的次数为 __left_rotations[round] # 循环左移即不断把队列头的元素往对了尾上放 for _ in range(self.__left_rotations[round]): L.append(L.pop(0)) R.append(R.pop(0)) # 56 Bit key to 48 Bit Subkey Kn[round] = self.__permutate(self.__pc2, L + R) return Kn def encrpyt(self, data): iv = string_to_bit_lst(self.__IV) if self.__iter_mod == 'CBC': return CBC.encrypt_iter(self._encrypt_a_block, self.__data_add_pading(data), iv) def decrypt(self, data): iv = string_to_bit_lst(self.__IV) if self.__iter_mod == 'CBC': return self.__data_rm_pading(CBC.decrypt_iter(self._decrypt_a_block, data, iv)) def _encrypt_a_block(self, block): """加密一个block""" return self.__crypt_a_block(self.__inter_round, block) def _decrypt_a_block(self, block): """解密一个block即加密一个block的反向过程""" return self.__crypt_a_block(reversed(self.__inter_round), block) def __crypt_a_block(self, iter_round, block): """ Feistel 网络的迭代过程 """ # 初始置换 block = self.__permutate(self.__ip, block) self.L = block[:32] self.R = block[32:] # 标准的DES算法迭代16轮 for round in iter_round: # 右半block 做一个Copy直接作为下次迭代左半block R_copy = self.R[:] # Feistel 网络的轮函数处理 self.__round_function(round, self.Kn) # 轮函数处理过的右半Block与左半Block做xor运算得到下次迭代的右半Block self.R = self.__xor_left_right_block(self.R, self.L) self.L = R_copy return self.__permutate(self.__fp, self.R + self.L) def __round_function(self, round, Kn): # eBox置换 R_arry = self.__e_box_handle(round, Kn, self.R) # sBox置换 self.R = self.__s_box_handle(R_arry) def __xor_left_right_block(self, R, L): return list(map(lambda x, y: x ^ y, R, L)) def __e_box_handle(self, round, Kn, R): # 32bit R Block 扩展为转换为48Bit Block self.R = self.__permutate(self.__expansion_table, R) # 取当且迭代的sub key 与48Bit R Block做异或运算 self.R = list(map(lambda x, y: x ^ y, self.R, Kn[round])) # 将48Bit R block转换为 6*8矩阵 return [self.R[:6], self.R[6:12], self.R[12:18], self.R[18:24], self.R[24:30], self.R[30:36], self.R[36:42], self.R[42:]] def __s_box_handle(self, arry): block = [0] * 32 pos = 0 for j in range(8): # 取6*8 R block 矩阵的每一行做如下操作 得到sbox 列坐标, m = (arry[j][0] << 1) + arry[j][5] n = (arry[j][1] << 3) + (arry[j][2] << 2) + (arry[j][3] << 1) + arry[j][4] # 得到当前迭代sbox的value v = self.__sbox[j][(m << 4) + n] # 通过sbox当前迭代的value得到新的32bit R block block[pos] = (v & 8) >> 3 block[pos + 1] = (v & 4) >> 2 block[pos + 2] = (v & 2) >> 1 block[pos + 3] = v & 1 pos += 4 # Permutate the concatination of B[1] to B[8] (Bn) R = self.__permutate(self.__p, block) return R def __permutate(self, table, block): """Permutate this block with the specified table""" return list(map(lambda x: block[x], table)) def __data_add_pading(self, data): # 填满8的整数倍 pad_len = 8 - (len(data) % 8) if (len(data) % 8) != 0 else 0 data += self.__pad * pad_len return data def __data_rm_pading(self, data): return data[:-8].decode() + data[-8:].decode().rstrip(self.__pad) class CBC: @staticmethod def encrypt_iter(block_encrypt_method, data, iv): result = [] # 加密迭代过程是先xor,后加密 for block in findall(r'.{8}', data): block = string_to_bit_lst(block) block = list(map(lambda x, y: x ^ y, block, iv)) encrypted_block = block_encrypt_method(block) iv = encrypted_block result.append(bit_lst_to_string(encrypted_block)) return bytes.fromhex('').join(result) @staticmethod def decrypt_iter(block_decrypt_method, data, iv): result = [] # 解密迭代过程是先解密,后xor for i in range(0, len(data), 8): block = string_to_bit_lst(data[i:i + 8]) decrypted_block = block_decrypt_method(block) decrypted_block = list(map(lambda x, y: x ^ y, decrypted_block, iv)) iv = block result.append(bit_lst_to_string(decrypted_block)) return bytes.fromhex('').join(result) # 这两个工具函数,直接copy pyDes库的,先不考虑cleanCode def string_to_bit_lst(data): """Turn the string data, into a list of bits (1, 0)'s""" if isinstance(data, str): data = [ord(c) for c in data] l = len(data) * 8 result = [0] * l pos = 0 for ch in data: i = 7 while i >= 0: if ch & (1 << i) != 0: result[pos] = 1 else: result[pos] = 0 pos += 1 i -= 1 return result def bit_lst_to_string(data): """Turn the list of bits -> data, into a string""" result = [] pos = 0 c = 0 while pos < len(data): c += data[pos] << (7 - (pos % 8)) if (pos % 8) == 7: result.append(c) c = 0 pos += 1 return bytes(result)