poj2417 Discrete Logging (计算离散对数)

xiaoxiao2021-02-28  130

Given a prime P, 2 <= P < 2  31, an integer B, 2 <= B < P, and an integer N, 1 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that  BL == N (mod P) Input Read several lines of input, each containing P,B,N separated by a space. Output For each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution". Sample Input 5 2 1 5 2 2 5 2 3 5 2 4 5 3 1 5 3 2 5 3 3 5 3 4 5 4 1 5 4 2 5 4 3 5 4 4 12345701 2 1111111 1111111121 65537 1111111111 Sample Output 0 1 3 2 0 3 1 2 0 no solution no solution 1 9584351 462803587 Hint The solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat's theorem that states  B(P-1) == 1 (mod P) for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat's theorem is that for any m  B(-m) == B(P-1-m) (mod P) .

计算离散对数模版题。

#include <cstdio> #include <algorithm> #include <cstring> using namespace std; /************************************* *baby_step giant_step *应用条件n必须为素数 *a^x = b (mod n) ,a,b < n *求解上式 0<=x < n的解 *************************************/ const int MOD = 76543; int hs[MOD],head[MOD],Next[MOD],id[MOD],top; void Insert(int x,int y) { int k = x%MOD; hs[top] = x, id[top] = y, Next[top] = head[k], head[k] = top++; } int Find(int x) { int k = x%MOD; for(int i = head[k]; i != -1; i = Next[i]) if(hs[i] == x) return id[i]; return -1; } int BSGS(int a,int b,int n) { memset(head,-1,sizeof(head)); top = 1; if(b == 1)return 0; int m = sqrt(n*1.0), j; long long x = 1, p = 1; for(int i = 0; i < m; ++i, p = p*a%n)Insert(p*b%n,i); for(long long i = m; ;i += m) { if( (j = Find(x = x*p%n)) != -1 )return i-j;//找到了可行解 if(i > n)break; } //如果无解 return -1; } int main() { //freopen("in.txt","r",stdin); //freopen("out.txt","w",stdout); int a,b,n; while(scanf("%d%d%d",&n,&a,&b) == 3) { int ans = BSGS(a,b,n); if(ans == -1)printf("no solution\n"); else printf("%d\n",ans); } return 0; }

转载请注明原文地址: https://www.6miu.com/read-32983.html

最新回复(0)