tensorflow tensorboard学习(转载1)

xiaoxiao2021-02-28  74

转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程: https://www.tensorflow.org/versions/master/how_tos/graph_viz/index.html

TensorFlow自带的一个强大的可视化工具

功能

这是TensorFlow在MNIST实验数据上得到Tensorboard结果

Event: 展示训练过程中的统计数据(最值,均值等)变化情况Image: 展示训练过程中记录的图像Audio: 展示训练过程中记录的音频Histogram: 展示训练过程中记录的数据的分布图

原理

在运行过程中,记录结构化的数据运行一个本地服务器,监听6006端口请求时,分析记录的数据,绘制

实现

在构建graph的过程中,记录你想要追踪的Tensor

with tf.name_scope('output_act'): hidden = tf.nn.relu6(tf.matmul(reshape, output_weights[0]) + output_biases) tf.histogram_summary('output_act', hidden)

其中,

histogram_summary用于生成分布图,也可以用scalar_summary记录存数值使用scalar_summary的时候,tag和tensor的shape要一致name_scope可以不写,但是当你需要在Graph中体现tensor之间的包含关系时,就要写了,像下面这样: with tf.name_scope('input_cnn_filter'): with tf.name_scope('input_weight'): input_weights = tf.Variable(tf.truncated_normal( [patch_size, patch_size, num_channels, depth], stddev=0.1), name='input_weight') variable_summaries(input_weights, 'input_cnn_filter/input_weight') with tf.name_scope('input_biases'): input_biases = tf.Variable(tf.zeros([depth]), name='input_biases') variable_summaries(input_weights, 'input_cnn_filter/input_biases') 在Graph中会体现为一个input_cnn_filter,可以点开,里面有weight和biases用summary系列函数记录后,Tensorboard会根据graph中的依赖关系在Graph标签中展示对应的图结构官网封装了一个函数,可以调用来记录很多跟某个Tensor相关的数据: def variable_summaries(var, name): """Attach a lot of summaries to a Tensor.""" with tf.name_scope('summaries'): mean = tf.reduce_mean(var) tf.scalar_summary('mean/' + name, mean) with tf.name_scope('stddev'): stddev = tf.sqrt(tf.reduce_sum(tf.square(var - mean))) tf.scalar_summary('sttdev/' + name, stddev) tf.scalar_summary('max/' + name, tf.reduce_max(var)) tf.scalar_summary('min/' + name, tf.reduce_min(var)) tf.histogram_summary(name, var) 只有这样记录国max和min的Tensor才会出现在Event里面Graph的最后要写一句这个,给session回调 merged = tf.merge_all_summaries()

Session 中调用

构造两个writer,分别在train和valid的时候写数据: train_writer = tf.train.SummaryWriter(summary_dir + '/train', session.graph) valid_writer = tf.train.SummaryWriter(summary_dir + '/valid') 这里的summary_dir存放了运行过程中记录的数据,等下启动服务器要用到构造run_option和run_meta,在每个step运行session时进行设置: summary, _, l, predictions = session.run([merged, optimizer, loss, train_prediction], options=run_options, feed_dict=feed_dict) 注意要把merged拿回来,并且设置options在每次训练时,记一次: train_writer.add_summary(summary, step) 在每次验证时,记一次: valid_writer.add_summary(summary, step) 达到一定训练次数后,记一次meta做一下标记 train_writer.add_run_metadata(run_metadata, 'stepd' % step)

查看可视化结果

启动TensorBoard服务器: python安装路径/python TensorFlow安装路径/tensorflow/tensorboard/tensorboard.py --logdir=path/to/log-directory

注意这个python必须是安装了TensorFlow的python,tensorboard.py必须制定路径才能被python找到,logdir必须是前面创建两个writer时使用的路径

比如我的是:

/home/cwh/anaconda2/envs/tensorflow/bin/python /home/cwh/anaconda2/envs/tensorflow/lib/python2.7/site-packages/tensorflow/tensorboard/tensorboard.py --logdir=~/coding/python/GDLnotes/src/convnet/summary

使用python

然后在浏览器输入 http://127.0.0.1:6006 就可以访问到tensorboard的结果

强迫症踩坑后记

之前我的cnn代码里有valid_prediction,所以画出来的graph有两条分支,不太清晰,所以只留了train一个分支

修改前:

多分支graph

修改后:

单分支graph 多用with,进行包裹,这样才好看,正如官网说的,你的summary代码决定了你的图结构不是所有的tensor都有必要记录,但是Variable和placeholder最好都用summary记录一下,也是为了好看由于有了gradient的计算,所以与gradient计算相关的都会被拎出来,下次试一下用其他optimizer

我的CNN TensorBoard代码:cnn_board.py

参考资料

mnist_with_summaries.py

觉得我的文章对您有帮助的话,不妨点个star?

转载请注明原文地址: https://www.6miu.com/read-32820.html

最新回复(0)