tensorflow实现线性回归的完整程序

xiaoxiao2021-02-28  82

ubuntu version:16.04 LTS tensorflow version:1.1.0 python version:2.7.12


import numpy as np import tensorflow as tf # Model parameters W = tf.Variable([.3], tf.float32) b = tf.Variable([-.3], tf.float32) # Model input and output x = tf.placeholder(tf.float32) linear_model = W * x + b y = tf.placeholder(tf.float32) # loss loss = tf.reduce_sum(tf.square(linear_model - y)) # sum of the squares # optimizer optimizer = tf.train.GradientDescentOptimizer(0.01) train = optimizer.minimize(loss) # training data x_train = [1,2,3,4] y_train = [0,-1,-2,-3] # training loop init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) # reset values to wrong for i in range(1000): sess.run(train, {x:x_train, y:y_train}) # evaluate training accuracy curr_W, curr_b, curr_loss = sess.run([W, b, loss], {x:x_train, y:y_train}) print("W: %s b: %s loss: %s"%(curr_W, curr_b, curr_loss))

运行结果:

W: [-0.9999969] b: [ 0.99999082] loss: 5.69997e-11

tensorboard流程图

转载请注明原文地址: https://www.6miu.com/read-32472.html

最新回复(0)