题目描述:
There are two sorted arrays nums1 and nums2 of size m and n respectively.
Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). Example 1:
nums1 = [1, 3]
nums2 = [2]
The median is 2.0 Example 2:
nums1 = [1, 2]
nums2 = [3, 4]
The median is (2 + 3)/2 = 2.5
知识补充
1.vector类的使用
vector可以看做一个类,当我们不确定数组的大小时,vector可以看做动态的数组。
vector初始化
vector <int> a;
vector <int> b(
10);
vector <int> c(
10,
1);
vector <string> d;
int arr1[]={
0,
5,
7,
8,
13};
vector< int > nums1(arr1,arr1+
5);
输出vector中的元素
vector<int>::iterator it;
for( it=arr1.begin();it!=arr1.end();++it)
{
cout<<*it<<
" ";
}
将两个vector合并为一个
vector< int > nums3;
nums3.insert(nums1.end(),nums2.begin(),nums2.end());
测试代码
class Solution {
public:
double findMedianSortedArrays(
vector<int>& nums1,
vector<int>& nums2) {
vector< int > nums3;
nums3.insert(nums3.end(),nums1.begin(),nums1.end());
nums3.insert(nums3.end(),nums2.begin(),nums2.end());
std::sort (nums3.begin(), nums3.end());
float media =
0.0;
int pos = nums3.size();
if(pos%
2==
0){
media =
static_cast<
float>((nums3[pos/
2]+nums3[(pos/
2)-
1]))/
2;
}
else {
media = nums3[pos/
2];
}
return media;
}
};
性能
参考答案
class Solution {
public:
double findMedianSortedArrays(
vector<int>& nums1,
vector<int>& nums2) {
int N1 = nums1.size();
int N2 = nums2.size();
if (N1 < N2)
return findMedianSortedArrays(nums2, nums1);
if (N2 ==
0)
return ((
double)nums1[(N1-
1)/
2] + (
double)nums1[N1/
2])/
2;
int lo =
0, hi = N2 *
2;
while (lo <= hi) {
int mid2 = (lo + hi) /
2;
int mid1 = N1 + N2 - mid2;
double L1 = (mid1 ==
0) ? INT_MIN : nums1[(mid1-
1)/
2];
double L2 = (mid2 ==
0) ? INT_MIN : nums2[(mid2-
1)/
2];
double R1 = (mid1 == N1 *
2) ? INT_MAX : nums1[(mid1)/
2];
double R2 = (mid2 == N2 *
2) ? INT_MAX : nums2[(mid2)/
2];
if (L1 > R2) lo = mid2 +
1;
else if (L2 > R1) hi = mid2 -
1;
else return (max(L1,L2) + min(R1, R2)) /
2;
}
return -
1;
}
};
性能