文章列出了Sklearn模块中常用的算法及调用方法,部分生僻的未列出(对我来说算生僻的),如果有写的不对的地方请指出。 参考资料来自sklearn官方网站:http://scikit-learn.org/stable/
总的来说,Sklearn可实现的函数或功能可分为以下几个方面:
分类算法回归算法聚类算法降维算法文本挖掘算法模型优化数据预处理最后再说明一下可能不支持的算法(也可能是我没找到,但有其他模块可以实现)线性判别分析(LDA)
>>> from sklearn.discriminant_analysis import LinearDiscriminantAnalysis >>> lda = LinearDiscriminantAnalysis(solver="svd", store_covariance=True)二次判别分析(QDA)
>>> from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis >>> qda = QuadraticDiscriminantAnalysis(store_covariances=True)支持向量机(SVM)
>>> from sklearn import svm >>> clf = svm.SVC()Knn算法
>>> from sklearn import neighbors >>> clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)神经网络(nn)
>>> from sklearn.neural_network import MLPClassifier >>> clf = MLPClassifier(solver='lbfgs', alpha=1e-5, ... hidden_layer_sizes=(5, 2), random_state=1)朴素贝叶斯算法(Naive Bayes)
>>> from sklearn.naive_bayes import GaussianNB >>> gnb = GaussianNB()决策树算法(decision tree)
>>> from sklearn import tree >>> clf = tree.DecisionTreeClassifier()集成算法(Ensemble methods)
Bagging
>>> from sklearn.ensemble import BaggingClassifier >>> from sklearn.neighbors import KNeighborsClassifier >>> bagging = BaggingClassifier(KNeighborsClassifier(), ... max_samples=0.5, max_features=0.5)随机森林(Random Forest)
>>> from sklearn.ensemble import RandomForestClassifier >>> clf = RandomForestClassifier(n_estimators=10)AdaBoost
>>> from sklearn.ensemble import AdaBoostClassifier >>> clf = AdaBoostClassifier(n_estimators=100)GBDT(Gradient Tree Boosting)
>>> from sklearn.ensemble import GradientBoostingClassifier >>> clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, ... max_depth=1, random_state=0).fit(X_train, y_train)最小二乘回归(OLS)
>>> from sklearn import linear_model >>> reg = linear_model.LinearRegression()岭回归(Ridge Regression)
>>> from sklearn import linear_model >>> reg = linear_model.Ridge (alpha = .5)核岭回归(Kernel ridge regression)
>>> from sklearn.kernel_ridge import KernelRidge >>> KernelRidge(kernel='rbf', alpha=0.1, gamma=10)支持向量机回归(SVR)
>>> from sklearn import svm >>> clf = svm.SVR()套索回归(Lasso)
>>> from sklearn import linear_model >>> reg = linear_model.Lasso(alpha = 0.1)弹性网络回归(Elastic Net)
>>> from sklearn.linear_model import ElasticNet >>> regr = ElasticNet(random_state=0)贝叶斯回归(Bayesian Regression)
>>> from sklearn import linear_model >>> reg = linear_model.BayesianRidge()逻辑回归(Logistic regression)
>>> from sklearn.linear_model import LogisticRegression >>> clf_l1_LR = LogisticRegression(C=C, penalty='l1', tol=0.01) >>> clf_l2_LR = LogisticRegression(C=C, penalty='l2', tol=0.01)稳健回归(Robustness regression)
>>> from sklearn import linear_model >>> ransac = linear_model.RANSACRegressor()多项式回归(Polynomial regression——多项式基函数回归)
>>> from sklearn.preprocessing import PolynomialFeatures >>> poly = PolynomialFeatures(degree=2) >>> poly.fit_transform(X)高斯过程回归(Gaussian Process Regression)
偏最小二乘回归(PLS)
>>> from sklearn.cross_decomposition import PLSCanonical >>> PLSCanonical(algorithm='nipals', copy=True, max_iter=500, n_components=2,scale=True, tol=1e-06)典型相关分析(CCA)
>>> from sklearn.cross_decomposition import CCA >>> cca = CCA(n_components=2)Knn算法
>>> from sklearn.neighbors import NearestNeighbors >>> nbrs = NearestNeighbors(n_neighbors=2, algorithm='ball_tree').fit(X)Kmeans算法
>>> from sklearn.cluster import KMeans >>> kmeans = KMeans(init='k-means++', n_clusters=n_digits, n_init=10)层次聚类(Hierarchical clustering)——支持多种距离
>>> from sklearn.cluster import AgglomerativeClustering >>> model = AgglomerativeClustering(linkage=linkage, connectivity=connectivity, n_clusters=n_clusters)主成分方法(PCA)
>>> from sklearn.decomposition import PCA >>> pca = PCA(n_components=2)核函主成分(kernal pca)
>>> from sklearn.decomposition import KernelPCA >>> kpca = KernelPCA(kernel="rbf", fit_inverse_transform=True, gamma=10)因子分析(Factor Analysis)
>>> from sklearn.decomposition import FactorAnalysis >>> fa = FactorAnalysis()主题生成模型(Latent Dirichlet Allocation)
>>> from sklearn.decomposition import NMF, LatentDirichletAllocation潜在语义分析(latent semantic analysis)
不具体列出函数,只说明提供的功能
特征选择随机梯度方法交叉验证参数调优模型评估:支持准确率、召回率、AUC等计算,ROC,损失函数等作图极限提升树算法(xgboost) 有专门的xgb模块支持
深度学习相关算法RNN,DNN,NN,LSTM等 有专门的深度学习模块入tf,keras等支持