HDU3038 How Many Answers Are Wrong【巧妙并查集】

xiaoxiao2021-02-28  95

题目链接

http://acm.hdu.edu.cn/showproblem.php?pid=3038

思路

题意就是说,不停的给你区间和,问你和前面已给出的矛盾的有几个。

首先,对于给定的一系列区间[a, b],只有有某个点相邻的区间,我们才能把它结合,得出新的信息。

像[1, 8], [6, 10]这样的不相邻的区间,我们得不出除了他们俩本身以外的任何信息。

但例如[1, 10], [1,3], [6,10],我们就能把他们结合,得出几个新区间信息:[4, 5], [1, 5], [4, 10]。

然后,这时候如果我们把左端点减个1,化为左开右闭的区间,就相当于,我们通过(0, 10], (0, 3], (5, 10]推出了(3, 5], (0, 5], (3, 10],也就是说,我们推出了{0, 3, 5, 10}里任取两个当端点的所有区间的信息。

怎么样,是不是有点并查集的味道了?也就是说,只要有端点相同,我们可以把这些点归到一个集合里,然后这个集合里所有的端点,任取两个,我们都能得出他的信息。

所以现在我们能做到,对于给定的一个区间(a-1, b],我们可以判断出,这个区间的信息能不能通过以前的区间得到,如果不能,把两个端点所属的集合合并。如果能,判断当前给的区间和,是不是和推出来的区间和相等,如果相等没问题,否则答案++。

那接下来的难点就是,怎么得到这个推出来的区间和?我们现在只能判断能不能推出来,但不知道推出来是多少。

这就是这题最巧妙的地方了,我们记一个值w[i],表示并查集里i这个节点到他父节点的距离,也就是说设sum[i]为(0, i]的区间和,w[i] = sum[i] - sum[fa[i]]。

然后,因为并查集路径压缩的特点,每次find之后,每个集合都是成三角形的形状,所有子节点都直接指向唯一一个父节点。

所以,如果我们能把w[i]维护好,区间(a, b]的和可以很轻松的算出来:

sum[b] - sum[a]

= sum[b] - sum[fa[b]] - (sum[a] - sum[fa[a]])

因为fa[b] = fa[a](路径压缩的特点),所以

= w[b] - w[a]

那么接下来就是怎么维护好这个w了。

首先w发生变动的地方有两个,一个是find过程中的路径压缩,这时候w只要加上他父节点的w值即可。

还有一处就是合并集合的时候,设输入的集合为(a, b],和为c,a到他集合的父节点的距离为x,b到父节点的距离为y,合并a,b集合时,a所处集合的父节点到b所处的集合的父节点距离为z。

则有等式,x + z - y = c,得z = y - x + c,即z = w[b] - w[a] +c。

至此,本题就完了。

这题并查集真的用的十分巧妙,需要好好理解。

AC代码

#include <iostream> #include <cstdio> #include <cstring> #include <vector> #include <cmath> #include <algorithm> using namespace std; typedef long long ll; #define CLR(x,y) memset((x),(y),sizeof(x)) const int N = 200000 + 100; int pre[N], w[N]; int find(int x) { if (x == pre[x])return x; else { int fa = find(pre[x]); w[x] += w[pre[x]]; pre[x] = fa; return fa; } } int main() { int n, m; while (scanf("%d%d", &n, &m) != EOF) { for (int i = 0; i <= n; ++i) { pre[i] = i; w[i] = 0; } int ans = 0; while (m--) { int a, b, c; scanf("%d%d%d", &a, &b, &c); a--; int x = find(a), y = find(b); if (x == y) { if (w[b] - w[a] != c)ans++; } else { pre[y] = x; w[y] = w[a] - w[b] + c; } } printf("%d\n", ans); } return 0; }
转载请注明原文地址: https://www.6miu.com/read-30894.html

最新回复(0)