【python】pandas & matplotlib 数据处理 绘制曲面图

xiaoxiao2021-02-28  118

Python matplotlib模块,是扩展的MATLAB的一个绘图工具库,它可以绘制各种图形

建议安装 Anaconda后使用 ,集成了很多第三库,基本满足大家的需求,下载地址,对应选择python 2.7 或是 3.5 的就可以了:  https://www.continuum.io/downloads#windows

脚本默认执行方式:               1.获取当前文件夹下的1.log文件               2.将数据格式化为矩阵               3.以矩阵的列索引为x坐标,行索引为y坐标,值为z坐标               4.绘制曲面图 测试数据 测试所用数据:   r_gain= 79.000000f,  89.000000f, 104.000000f, 120.000000f, 135.000000f, 149.000000f, 160.000000f, 172.000000f, 176.000000f, 172.000000f, 164.000000f, 159.000000f, 143.000000f, 128.000000f, 113.000000f,  97.000000f,  81.000000f, r_gain= 84.000000f, 100.000000f, 120.000000f, 136.000000f, 156.000000f, 176.000000f, 192.000000f, 204.000000f, 208.000000f, 204.000000f, 196.000000f, 180.000000f, 164.000000f, 144.000000f, 124.000000f, 108.000000f,  92.000000f, r_gain= 91.000000f, 112.000000f, 132.000000f, 156.000000f, 176.000000f, 200.000000f, 224.000000f, 240.000000f, 248.000000f, 244.000000f, 228.000000f, 208.000000f, 188.000000f, 164.000000f, 140.000000f, 120.000000f,  99.000000f, r_gain= 99.000000f, 120.000000f, 144.000000f, 172.000000f, 200.000000f, 228.000000f, 256.000000f, 276.000000f, 284.000000f, 280.000000f, 264.000000f, 240.000000f, 208.000000f, 180.000000f, 156.000000f, 132.000000f, 105.000000f, r_gain=107.000000f, 128.000000f, 156.000000f, 184.000000f, 216.000000f, 256.000000f, 288.000000f, 308.000000f, 320.000000f, 316.000000f, 296.000000f, 264.000000f, 228.000000f, 196.000000f, 164.000000f, 140.000000f, 113.000000f, r_gain=111.000000f, 132.000000f, 160.000000f, 192.000000f, 232.000000f, 272.000000f, 304.000000f, 332.000000f, 340.000000f, 336.000000f, 316.000000f, 284.000000f, 244.000000f, 204.000000f, 172.000000f, 144.000000f, 117.000000f, r_gain=109.000000f, 136.000000f, 164.000000f, 196.000000f, 232.000000f, 276.000000f, 312.000000f, 336.000000f, 348.000000f, 344.000000f, 320.000000f, 288.000000f, 248.000000f, 208.000000f, 172.000000f, 144.000000f, 117.000000f, r_gain=111.000000f, 132.000000f, 160.000000f, 192.000000f, 228.000000f, 268.000000f, 304.000000f, 328.000000f, 340.000000f, 332.000000f, 312.000000f, 280.000000f, 240.000000f, 200.000000f, 168.000000f, 140.000000f, 119.000000f, r_gain=101.000000f, 128.000000f, 152.000000f, 180.000000f, 212.000000f, 248.000000f, 280.000000f, 304.000000f, 312.000000f, 308.000000f, 288.000000f, 260.000000f, 224.000000f, 192.000000f, 160.000000f, 136.000000f, 109.000000f, r_gain= 95.000000f, 116.000000f, 140.000000f, 164.000000f, 192.000000f, 224.000000f, 248.000000f, 272.000000f, 280.000000f, 272.000000f, 256.000000f, 232.000000f, 200.000000f, 176.000000f, 152.000000f, 128.000000f, 101.000000f, r_gain= 87.000000f, 108.000000f, 128.000000f, 148.000000f, 172.000000f, 192.000000f, 216.000000f, 232.000000f, 236.000000f, 232.000000f, 220.000000f, 200.000000f, 180.000000f, 156.000000f, 136.000000f, 116.000000f,  95.000000f, r_gain= 80.000000f,  96.000000f, 112.000000f, 132.000000f, 148.000000f, 168.000000f, 180.000000f, 192.000000f, 196.000000f, 196.000000f, 184.000000f, 172.000000f, 156.000000f, 136.000000f, 120.000000f, 104.000000f,  88.000000f, r_gain= 69.000000f,  85.000000f,  96.000000f, 111.000000f, 127.000000f, 141.000000f, 153.000000f, 160.000000f, 164.000000f, 159.000000f, 157.000000f, 145.000000f, 135.000000f, 120.000000f, 104.000000f,  88.000000f,  77.000000f,

曲面图脚本 # -*- coding: utf-8 -*-   from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from pandas import DataFrame     def draw(x, y, z):      '''      采用matplolib绘制曲面图      :param x: x轴坐标数组      :param y: y轴坐标数组      :param z: z轴坐标数组      :return:      '''      X = x      Y = y      Z = z        fig = plt.figure()      ax = fig.add_subplot( 111 , projection = '3d' )      ax.plot_trisurf(X, Y, Z)      plt.show()   if __name__ = = '__main__' :      '''         默认执行方式:               1.获取当前文件夹下的1.log文件               2.将数据格式化为矩阵               3.以矩阵的列索引为x坐标,行索引为y坐标,值为z坐标               4.绘制曲面图      '''      data = {}      index_origin = 0      f = open ( "1.log" )      line = f.readline()      while line:          data[index_origin] = line.split( '=' )[ - 1 ].replace( ' ' , ' ').split(' f,')[ 0 : - 1 ]          index_origin = index_origin + 1          line = f.readline()      f.close()      df = DataFrame(data)      df = df.T        x = []      for i in range ( len (df.index)):          x = x + list (df.columns)      print (x)        y = []      for i in range ( len (df.index)):          for m in range ( 17 ):              y.append(i)      print (y)        z = []      for i in range ( len (df.index)):          z = z + df[i:i + 1 ].values.tolist()[ 0 ]      z = map ( float , z)      print (z)      draw(x, y, z)
转载请注明原文地址: https://www.6miu.com/read-26861.html

最新回复(0)