Tensorflow学习笔记-神经网络优化

xiaoxiao2021-02-28  10

神经网络优化

神经元模型:神经网络的基本单位激活函数:映入非线性激活因素,提高模型的表达力。 常用的激活函数为ReLu、Sigmod、tanh等 一般为了防止梯度消失(vanishing gradient)和梯度爆炸(gradient explording)常选用ReLu(注:CS231N也指出过常用的激活函数为ReLu) tf.nn.relu() tf.nn.sigmoid() tf.nn.tanh() 神经网络的复杂度:可用神经网络的层数和神经网络待优化参数的个数表示神经网络的层数:一般不计入输入层, 层数 = n个隐藏层 + 1个输入层神经网络待优化参数: 神经网络中所有参数W的个数 + 1个输出层损失函数(loss):用来表示预测值(y)与已知答案(y_)的差距。 在训练神经网络时,通过不断改变神经网络中所有参数,使损失函数不断减小,从而训练出更高准确率的神经网络模型。常用的损失函数有均方误差、自定义和交叉熵等。

例如: 预测酸奶日销量 y, x1 和 x2 是影响日销量的两个因素。 即:用神经网络拟合y_ = X1 + X2的数据。为了更真实, 加入了正负0.05的随机噪声。

import tensorflow as tf import numpy as np BATCH_SIZE = 8 seed = 23455 rdm = np.random.RandomState(seed) X = rdm.rand(32, 2) Y_ = [[X1 + X2 + (rdm.rand() / 10.0 - 0.05)] for (X1, X2) in X] x = tf.placeholder(tf.float32, shape=(None, 2)) y_ = tf.placeholder(tf.float32, shape=(None, 1)) w1 = tf.Variable(tf.random_normal([2, 1], stddev=1, seed=1)) y = tf.matmul(x, w1) loss_mse = tf.reduce_mean(tf.square(y_ - y)) train_step = tf.train.GradientDescentOptimizer(0.001).minimize(loss_mse) with tf.Session() as sess: init_op = tf.global_variables_initializer() sess.run(init_op) STEPS = 20000 for i in range(STEPS): start = (i * BATCH_SIZE) % 32 end = start + BATCH_SIZE sess.run(train_step, feed_dict={x: X[start:end], y_: Y_[start:end]}) if i % 500 == 0: print("After %d training step(s) " % i) print("w1 is ", sess.run(w1)) print("Final w1 is :\n", sess.run(w1))

tip:可以尝试改变学习率的值,观察参数变化和收敛情况

Final w1 is : [[0.98019385] [1.0159807 ]]

* 预测结果 * : y = 0.98*X1 + 1.02*X2 基本符合

自定义损失函数: 根据问题的实际情况, 定制合理的损失函数。

即:y_ > y? PROFIT*(y_ - y) : COST*(y - y_)

y_:实际值 y :预期值

上述if else语句如何转化成tensorflow语句呢?

loss = tf.reduce_sum(tf.where(tf.greater(y_, y), PROFIT(y_-y), COST(y-y_)))

交叉熵(Cross Entropy):表示两个概率分布之间的距离。交叉熵越大,两个概率分布距离越远, 两个概率分布越相异; 交叉熵越小,两个概率分布距离越近,两个概率分布越相似。

用tensorflow表示 ce= -tf.reduce_mean(y_* tf.log(tf.clip_by_value(y, 1e-12, 1.0)))

softmax 函数: 将 n 分类的 n 个输出(y1,y2…yn) 变为满足以下概率分布要求的函数。

在 Tensorflow 中,一般让模型的输出经过 softmax 函数, 以获得输出分类的概率分布,再与标准答案对比, 求出交叉熵, 得到损失函数,用如下函数实现:

ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))

cem = tf.reduce_mean(ce)

学习率(Learning Rate):表示每次参数更新的幅度大小。 在训练过程中,参数的更新向着损失函数梯度下降的方向。

参数更新公式:Wn+1 = Wn - learning_rate▽

例如: 假设loss = (w + 1)²,寻找最优参

import tensorflow as tf import numpy as np w = tf.Variable(tf.constant(5, dtype=tf.float32)) loss = tf.square(w+1) train_step = tf.train.GradientDescentOptimizer(.2).minimize(loss)#learning_rate为0.2 with tf.Session() as sess: init_op = tf.global_variables_initializer() sess.run(init_op) STEPS = 40 for i in range(STEPS): sess.run(train_step) w_val = sess.run(w) loss_val = sess.run(loss) print("After %d step(s): w is %f, loss is %f" % (i, w_val, loss_val))

tip:可以改变学习率观察收敛结果和收敛速度

指数衰减学习率:学习率随着训练轮数而动态变化

用 Tensorflow 的函数表示为:

global_step = tf.Variable(0, trainable=False) learning_rate = tf.train.exponential_decay( LEARNING_RATE_BASE, global_step, LEARNING_RATE_STEP, LEARNING_RATE_DECAY, staircase=True/False)

staircase 设置为 True 时,表示 global_step/learning rate step 取整数,学习 率阶梯型衰减;若 staircase 设置为 false 时,学习率会是一条平滑下降的曲线。

例如:

import tensorflow as tf LEARNING_RATE_BASE = .1 # 初始学习率 LEARNING_RATE_DECAY = .99 # 衰减学习率 LEARNING_RATE_STEP = 1 # 喂入多少轮BATCH后,更新一次学习率,一般设为:sum/BATCH_SIZE global_step = tf.Variable(0, trainable=False) learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE, \ global_step, LEARNING_RATE_STEP, LEARNING_RATE_DECAY, staircase=True) w = tf.Variable(tf.constant(5, dtype=tf.float32)) loss = tf.square(w + 1) train_step = tf.train.GradientDescentOptimizer(learning_rate). \ minimize(loss, global_step=global_step) with tf.Session() as sess: init_op = tf.global_variables_initializer() sess.run(init_op) STEPS = 40 for i in range(STEPS): sess.run(train_step) learning_rate_val = sess.run(learning_rate) global_step_val = sess.run(global_step) w_val = sess.run(w) loss_val = sess.run(loss) print("After %s steps: global_step is %f, w id %f, learning rate is %f, loss is %f" % (i, global_step_val, w_val, learning_rate_val, loss_val))

滑动平均: 记录了一段时间内模型中所有参数 w 和 b 各自的平均值。利用滑动平均值可以增强模 型的泛化能力。

影子 = 衰减值 x 影子 + (1 - 衰减值) x 参数用tensorflow表示: ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)

其中, MOVING_AVERAGE_DECAY 表示滑动平均衰减率,一般会赋接近 1 的值, global_step 表示当前训练了多少轮。

ema_op = ema.apply(tf.trainable_variables())

其中, ema.apply()函数实现对括号内参数求滑动平均, tf.trainable_variables()函数实现把所有 待训练参数汇总为列表。

with tf.control_dependencies([train_step, ema_op]): train_op = tf.no_op(name='train')

其中,该函数实现将滑动平均和训练过程同步运行。 查看模型中参数的平均值,可以用 ema.average()函数。

import tensorflow as tf w1 = tf.Variable(0, dtype=tf.float32) global_step = tf.Variable(0, dtype = tf.float32) MOVING_AVERAGE_DECAY = 0.99 ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step) #ema.apply后对应的是更新后的列表,每次更新sess.run(ema_op)时,对更新列表中的元素求滑动平均值 #在实际应用中会使用tf.trainable_variables()自动将所有训练参数汇总为列表 #ema.apply([w1]) ema_op = ema.apply(tf.trainable_variables()) with tf.Session() as sess: init_op = tf.global_variables_initializer() sess.run(init_op) print(sess.run([w1, ema.average(w1)])) sess.run(tf.assign(global_step, 100)) sess.run(tf.assign(w1, 10)) sess.run(ema_op) print(sess.run([w1, ema.average(w1)])) sess.run(ema_op) print(sess.run([w1, ema.average(w1)])) sess.run(ema_op) print(sess.run([w1, ema.average(w1)])) sess.run(ema_op) print(sess.run([w1, ema.average(w1)])) sess.run(ema_op) print(sess.run([w1, ema.average(w1)])) 过拟合: 神经网络模型在训练数据集上的准确率较高,在新的数据进行预测或分类时准确率较 低, 说明模型的泛化能力差。

正则化: 在损失函数中给每个参数 w 加上权重,引入模型复杂度指标,从而抑制模型噪声, 减小 过拟合。

L1正则化:

用 Tesnsorflow 函数表示:loss(w) = tf.contrib.layers.l1_regularizer(REGULARIZER)(w)

L2正则化:

用 Tesnsorflow 函数表示:loss(w) = tf.contrib.layers.l2_regularizer(REGULARIZER)(w)

使用正则化之后,损失函数Loss变成两项之和:

loss = loss(y 与 y_) + REGULARIZER*loss(w)

用 Tesnsorflow 函数实现正则化:

tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w) loss = cem + tf.add_n(tf.get_collection('losses')) ``` ```python import tensorflow as tf import numpy as np import matplotlib.pyplot as plt LEARNING_RATE_BASE = .001 LEARNING_RATE_DECAY = .999 BATCH_SIZE = 30 seed = 2 rdm = np.random.RandomState(seed) X = rdm.randn(300, 2) Y_ = [int((x0 * x0 + x1 * x1) < 2) for (x0, x1) in X] Y_c = [["red" if y else "blue"] for y in Y_] X = np.vstack(X).reshape(-1, 2) Y_ = np.vstack(Y_).reshape(-1, 1) plt.scatter(X[:, 0], X[:, 1], c=np.squeeze(Y_c)) plt.savefig('original.png') plt.show() def get_weight(shape, regularizer): w = tf.Variable(tf.random_normal(shape), dtype=tf.float32) tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w)) return w def get_bias(shape): b = tf.Variable(tf.constant(.01, shape=shape)) return b x = tf.placeholder(tf.float32, shape=(None, 2)) y_ = tf.placeholder(tf.float32, shape=(None, 1)) w1 = get_weight([2, 11], .01) b1 = get_bias([11]) y1 = tf.nn.relu(tf.matmul(x, w1) + b1) w2 = get_weight([11, 1], .01) b2 = get_bias([1]) y = tf.matmul(y1, w2) + b2 global_step = tf.Variable(0, trainable=False) learning_rate = tf.train.exponential_decay( LEARNING_RATE_BASE, global_step, 300/BATCH_SIZE, LEARNING_RATE_DECAY, staircase=True ) loss_mse = tf.reduce_mean(tf.square(y - y_)) loss_total = loss_mse + tf.add_n(tf.get_collection('losses')) train_step = tf.train.AdamOptimizer(learning_rate).minimize(loss_mse) with tf.Session() as sess: init_op = tf.global_variables_initializer() sess.run(init_op) STEPS = 40000 for i in range(STEPS): start = (i * BATCH_SIZE) % 300 end = start + BATCH_SIZE sess.run(train_step, feed_dict={x: X[start: end], y_: Y_[start: end]}) if i % 2000 == 0: loss_mse_val = sess.run(loss_mse, feed_dict={x: X, y_: Y_}) print("After %d steps, loss is %f" % (i, loss_mse_val)) xx, yy = np.mgrid[-3:3:.01, -3:3:.01] grid = np.c_[xx.ravel(), yy.ravel()] probs = sess.run(y, feed_dict={x: grid}) probs = probs.reshape(xx.shape) print("w1:\n", sess.run(w1)) print("w1:\n", sess.run(b1)) print("w1:\n", sess.run(w2)) print("w1:\n", sess.run(b2)) plt.scatter(X[:, 0], X[:, 1], c=np.squeeze(Y_c)) plt.contour(xx, yy, probs, levels=[.5]) plt.savefig('result.png') plt.show()
转载请注明原文地址: https://www.6miu.com/read-2650186.html

最新回复(0)