TensorFlow的assign赋值用法

xiaoxiao2021-02-28  46

TensorFlow修改变量值后,需要重新赋值,assign用起来有点小技巧,就是需要需要弄个操作子,运行一下。

下面这么用是不行的

import tensorflow as tf import numpy as np x = tf.Variable(0) init = tf.initialize_all_variables() sess = tf.InteractiveSession() sess.run(init) print(x.eval()) x.assign(1) print(x.eval())

正确用法

https://stackoverflow.com/questions/34220532/how-to-assign-a-value-to-a-tensorflow-variable提供了3种方法

1.

import tensorflow as tf x = tf.Variable(0) y = tf.assign(x, 1) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print sess.run(x) print sess.run(y) print sess.run(x)

2.

In [212]: w = tf.Variable(12) In [213]: w_new = w.assign(34) In [214]: with tf.Session() as sess: ...: sess.run(w_new) ...: print(w_new.eval()) # output 34

3.

import tensorflow as tf x = tf.Variable(0) sess = tf.Session() sess.run(tf.global_variables_initializer()) print(sess.run(x)) # Prints 0. x.load(1, sess) print(sess.run(x)) # Prints 1.

我的方法

import numpy as np #这是Python的一种开源的数值计算扩展,非常强大 import tensorflow as tf  #导入tensorflow ##构造数据## x_data=np.random.rand(100).astype(np.float32) #随机生成100个类型为float32的值 y_data=x_data*0.1+0.3  #定义方程式y=x_data*A+B ##-------## ##建立TensorFlow神经计算结构## weight=tf.Variable(tf.random_uniform([1],-1.0,1.0)) biases=tf.Variable(tf.zeros([1]))      y=weight*x_data+biases w1=weight*2 loss=tf.reduce_mean(tf.square(y-y_data))  #判断与正确值的差距 optimizer=tf.train.GradientDescentOptimizer(0.5) #根据差距进行反向传播修正参数 train=optimizer.minimize(loss) #建立训练器 init=tf.global_variables_initializer() #初始化TensorFlow训练结构 #sess=tf.Session()  #建立TensorFlow训练会话 sess = tf.InteractiveSession()   sess.run(init)     #将训练结构装载到会话中 print('weight',weight.eval()) for  step in range(400): #循环训练400次      sess.run(train)  #使用训练器根据训练结构进行训练      if  step ==0:  #每20次打印一次训练结果         print(step,sess.run(weight),sess.run(biases)) #训练次数,A值,B值          print(sess.run(loss))         print('weight new',weight.eval()) #wop=weight.assign([3]) #wop.eval() weight.load([1],sess) print('w1',w1.eval())

转载请注明原文地址: https://www.6miu.com/read-2631252.html

最新回复(0)