201877 Pandas学习笔记

xiaoxiao2021-02-28  40

pandas是基于numpy构建的数据处理库。

pandas的数据结构介绍

Series

In [3]: from pandas import Series,DataFrame In [4]: obj = Series([2,-4,5,7]) In [5]: obj Out[5]: 0 2 1 -4 2 5 3 7 dtype: int64 In [6]: obj.values Out[6]: array([ 2, -4, 5, 7], dtype=int64) In [7]: obj.index Out[7]: RangeIndex(start=0, stop=4, step=1) In [8]: obj2 = Series([4,-2,-7,6],index = ['a','b','c','d']) In [9]: obj2 Out[9]: a 4 b -2 c -7 d 6 dtype: int64 In [10]: obj2.index Out[10]: Index(['a', 'b', 'c', 'd'], dtype='object') In [11]: obj2['d'] Out[11]: 6 In [13]: obj2[['d','a','c']] Out[13]: d    6 a    4 c   -7 dtype: int64 In [14]: obj2[obj2 > 0] Out[14]: a 4 d 6 dtype: int64 In [15]: obj2 * 2 Out[15]: a 8 b -4 c -14 d 12 dtype: int64 In [16]: np.exp(obj2) Out[16]: a 54.598150 b 0.135335 c 0.000912 d 403.428793 dtype: float64 In [17]: 'b' in obj2 Out[17]: True In [18]: 'e' in obj2 Out[18]: False In [19]: sdata = {'Ohio' : 122, 'Texas': 7000,'Oregon': 16000, 'Utah':999} In [20]: obj3 = Series(sdata) In [21]: obj3 Out[21]: Ohio 122 Oregon 16000 Texas 7000 Utah 999 dtype: int64 In [22]: states = {'California', 'Ohio', 'Utah','Texas'} In [23]: obj4 = Series(sdata,index =states) In [24]: obj4 Out[24]: Utah 999.0 Texas 7000.0 California NaN Ohio 122.0 dtype: float64 In [25]: obj4.name = 'population' In [26]: obj4.index.name = 'state' In [27]: obj4 Out[27]: state Utah 999.0 Texas 7000.0 California NaN Ohio 122.0 Name: population, dtype: float64

转载请注明原文地址: https://www.6miu.com/read-2629940.html

最新回复(0)