Codeforces Round #319 (Div. 1) C. Points on Plane

xiaoxiao2021-02-28  44

                                C. Points on Plane

题目连接

http://codeforces.com/contest/576/problem/C

Description

On a plane are n points (xi, yi) with integer coordinates between 0 and 106. The distance between the two points with numbers a and bis said to be the following value:  (the distance calculated by such formula is called Manhattan distance).

We call a hamiltonian path to be some permutation pi of numbers from 1 to n. We say that the length of this path is value .

Find some hamiltonian path with a length of no more than 25 × 108. Note that you do not have to minimize the path length.

Input

The first line contains integer n (1 ≤ n ≤ 106).

The i + 1-th line contains the coordinates of the i-th point: xi and yi (0 ≤ xi, yi ≤ 106).

It is guaranteed that no two points coincide.

Output

Print the permutation of numbers pi from 1 to n — the sought Hamiltonian path. The permutation must meet the inequality .

If there are multiple possible answers, print any of them.

It is guaranteed that the answer exists.

Sample Input

50 78 103 45 09 12

Sample Output

4 3 1 2 5 

HINT

In the sample test the total distance is:

(|5 - 3| + |0 - 4|) + (|3 - 0| + |4 - 7|) + (|0 - 8| + |7 - 10|) + (|8 - 9| + |10 - 12|) = 2 + 4 + 3 + 3 + 8 + 3 + 1 + 2 = 26

题意:给定坐标系中n个点的坐标(范围[0,10^6]),求一种连边形成链后总长度<=2.5*10^9 的方案。n<=10^6链的长度是链上相邻两点的曼哈顿距离和。(输出任意解即可)

题解:X轴的点分成1000块,这样每块内Y坐标可走10^6,X坐标可走10^3,每块之间的连接最长为2*10^3,所以最大总距离为2*10^9+2*10^6,符合要求。

AC代码:

#include <cstdio> #include <cmath> #include <cstring> #include <iostream> #include <algorithm> using namespace std; inline int read() { int x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } int n; const int maxn = 1000007; pair<int,pair<int,int> > Q[maxn]; int main() { n = read(); for(int i=1;i<=n;i++) { Q[i].first = read()/1050; Q[i].second.first = read(); Q[i].second.second = i; } sort(Q+1,Q+1+n); for(int i=1;i<=n;i++) { cout<<Q[i].second.second<<" "; } cout<<endl; return 0; }
转载请注明原文地址: https://www.6miu.com/read-2629382.html

最新回复(0)