Given a non-empty array of non-negative integers nums, the degree of this array is defined as the maximum frequency of any one of its elements.
Your task is to find the smallest possible length of a (contiguous) subarray of nums, that has the same degree as nums.
Example 1:
Input: [1, 2, 2, 3, 1] Output: 2 Explanation: The input array has a degree of 2 because both elements 1 and 2 appear twice. Of the subarrays that have the same degree: [1, 2, 2, 3, 1], [1, 2, 2, 3], [2, 2, 3, 1], [1, 2, 2], [2, 2, 3], [2, 2] The shortest length is 2. So return 2.Example 2:
Input: [1,2,2,3,1,4,2] Output: 6Note: nums.length will be between 1 and 50,000. nums[i] will be an integer between 0 and 49,999.
给你一个非空且数组每项都是非负的值,数组的度定义为出现次数最多且包含此数全部连续最短的长度。 例如 1, 2 , 2, 3, 1 为[2,2],长度为2 再例如1,2,2,3,1,4,2 为2,2,3,1,4,2;长度为6
思路: 首先需要找到出现次数最多的数,用map计数 单数出现次数最多的数可能是多个数,先存在temp数组中。 遍历数组比较最短长度。
超时。。。
class Solution(object): def get_len(self, nums, index): e = 0 s = 0 for i in range(0, len(nums)): if index == nums[i]: s = i break for i in range(len(nums)-1, -1 ,-1): if index == nums[i]: e = i break return e-s+1 def findShortestSubArray(self, nums): """ :type nums: List[int] :rtype: int """ m = {} mx = 0 for i in range(0, len(nums)): m[nums[i]] = 0 for i in range(0, len(nums)): m[nums[i]] = m[nums[i]] + 1 if mx < m[nums[i]]: mx = m[nums[i]] temp = [] for key in m: if m[key] == mx: temp.append(key) mi = 50005 for i in range(0, len(temp)): mi = min(self.get_len(nums, temp[i]), mi) return mi