201877 Numpy学习笔记

xiaoxiao2021-02-28  38

线性代数

diag 以一维数组的形式返回方阵的对角线(或非对角线)元素,或将一维数组转换为方阵(非对角线元素为0) dot        矩阵乘法 trace      迹 det        行列式 eig        特征值和特征向量 inv        逆 pinv       M-P伪逆 qr         QR分解 svd        奇异值分解(SVD) solve      解线性方程组Ax=b,其中A为一个方阵 from numpy.linalg import inv,qr,eig,det X=np.random.randn(5) In [15]: np.diag(X,0) Out[15]: array([[-0.04919752, 0. , 0. , 0. , 0. ], [ 0. , -2.41638482, 0. , 0. , 0. ], [ 0. , 0. , -0.74095248, 0. , 0. ], [ 0. , 0. , 0. , 1.22281782, 0. ], [ 0. , 0. , 0. , 0. , 0.32168267]]) In [17]: X=randn(5,5) In [18]: np.diag(X) Out[18]: array([-0.88838756, 1.26365698, -1.12656889, 0.16951645, -1.66611019]) In [19]: np.trace(X) Out[19]: -2.2478932087162335 In [23]: eig(X) Out[23]: (array([ 2.72915784+0.j , -3.17432220+0.j , -0.53174377+1.33933414j, -0.53174377-1.33933414j, -0.73924131+0.j ]), array([[ 0.33773200+0.j , -0.47158061+0.j , -0.15087259-0.43977843j, -0.15087259+0.43977843j, -0.19931449+0.j ], [-0.61611163+0.j , 0.14440978+0.j , -0.34954343-0.17727477j, -0.34954343+0.17727477j, -0.47632919+0.j ], [ 0.22996607+0.j , 0.26472170+0.j , 0.55411821+0.j , 0.55411821-0.j , 0.33842959+0.j ], [ 0.49452699+0.j , -0.32855279+0.j , -0.39200833+0.11416825j, -0.39200833-0.11416825j, -0.75503564+0.j ], [ 0.45705823+0.j , 0.76074505+0.j , -0.08744326-0.3857813j , -0.08744326+0.3857813j , 0.22084120+0.j ]])) In [26]: det(X) Out[26]: 13.298783344691671

转载请注明原文地址: https://www.6miu.com/read-2628942.html

最新回复(0)