【BZOJ4671】异或图(容斥原理,线性基)

xiaoxiao2021-02-28  32

Description

定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中, 否则这条边不在 G 中. 现在给定 s 个结点数相同的图 G1…s, 设 S = {G1, G2, … , Gs}, 请问 S 有多少个子集的异或为一个连通图?


Solution

考虑枚举每一种点集的划分方式,我们可以用线性基方便地算出点集之间一定没有边的方案数,但是这样不能保证点集内部一定联通,所以就需要容斥一下。 设 m m 为枚举的点集的个数,则容斥系数fifi满足:

i=1m{mi}fi=[m=1] ∑ i = 1 m { m i } f i = [ m = 1 ] 由斯特林反演有: i=1m[i=1](1)mi[mi]=fm ∑ i = 1 m [ i = 1 ] ( − 1 ) m − i [ m i ] = f m 即: fm=(1)m1(m1)! f m = ( − 1 ) m − 1 ( m − 1 ) !


Code

/************************************************ * Au: Hany01 * Date: Jun 9th, 2018 * Prob: [BZOJ4671] 异或图 * Email: hany01@foxmail.com ************************************************/ #include<bits/stdc++.h> using namespace std; typedef long long LL; typedef pair<int, int> PII; #define File(a) freopen(a".in", "r", stdin), freopen(a".out", "w", stdout) #define rep(i, j) for (register int i = 0, i##_end_ = (j); i < i##_end_; ++ i) #define For(i, j, k) for (register int i = (j), i##_end_ = (k); i <= i##_end_; ++ i) #define Fordown(i, j, k) for (register int i = (j), i##_end_ = (k); i >= i##_end_; -- i) #define Set(a, b) memset(a, b, sizeof(a)) #define Cpy(a, b) memcpy(a, b, sizeof(a)) #define x first #define y second #define pb(a) push_back(a) #define mp(a, b) make_pair(a, b) #define ALL(a) (a).begin(), (a).end() #define SZ(a) ((int)(a).size()) #define INF (0x3f3f3f3f) #define INF1 (2139062143) #define Mod (1000000007) #define debug(...) fprintf(stderr, __VA_ARGS__) #define y1 wozenmezhemecaia template <typename T> inline bool chkmax(T &a, T b) { return a < b ? a = b, 1 : 0; } template <typename T> inline bool chkmin(T &a, T b) { return b < a ? a = b, 1 : 0; } inline int read() { register int _, __; register char c_; for (_ = 0, __ = 1, c_ = getchar(); c_ < '0' || c_ > '9'; c_ = getchar()) if (c_ == '-') __ = -1; for ( ; c_ >= '0' && c_ <= '9'; c_ = getchar()) _ = (_ << 1) + (_ << 3) + (c_ ^ 48); return _ * __; } const int maxs = 61, maxn = 11; struct Edge { int u, v; Edge(int u = 0, int v = 0): u(u), v(v) {} }E[maxn * maxn >> 1]; int s, len, n, G[maxs][maxn][maxn], id[maxn]; LL f[maxn], base[maxn * maxn], Ans; char str[maxs][maxn * maxn]; void DFS(int cur, int cnt) { if (cur > n) { Set(base, 0); int tot = 0, sum = 0; For(i, 1, n) For(j, i + 1, n) if (id[i] != id[j]) E[++ tot] = Edge(i, j); For(i, 1, s) { LL val = 0; For(j, 1, tot) if (G[i][E[j].u][E[j].v]) val |= (1ll << j); Fordown(j, tot, 1) if (val >> j & 1ll) if (!base[j]) { base[j] = val, ++ sum; break; } else val ^= base[j]; } Ans += f[cnt] * (1ll << (s - sum)); } else For(i, 1, cnt + 1) id[cur] = i, DFS(cur + 1, max(cnt, i)); } int main() { #ifdef hany01 File("bzoj4671"); #endif s = read(); For(i, 1, s) scanf("%s", str[i]); len = strlen(str[1]); n = int(sqrt(len << 1)) + 1; For(k, 1, s) { int cnt = 0; For(i, 1, n) For(j, i + 1, n) G[k][i][j] = str[k][cnt ++] ^ 48; } f[1] = 1; For(i, 2, n) f[i] = f[i - 1] * (LL)(1 - i); DFS(1, 0); printf("%lld\n", Ans); return 0; } //思悠悠,恨悠悠,恨到归时方始休。 // -- 白居易《长相思·汴水流》
转载请注明原文地址: https://www.6miu.com/read-2628447.html

最新回复(0)