Time limit : 2sec / Memory limit : 256MB Score: 300 points
We have a 3×3 grid. A number ci,j is written in the square (i,j), where (i,j) denotes the square at the i-th row from the top and the j-th column from the left. According to Takahashi, there are six integers a1,a2,a3,b1,b2,b3 whose values are fixed, and the number written in the square (i,j) is equal to ai+bj. Determine if he is correct.
•ci,j (1≤i≤3,1≤j≤3) is an integer between 0 and 100 (inclusive).
Input is given from Standard Input in the following format: c1,1 c1,2 c1,3 c2,1 c2,2 c2,3 c3,1 c3,2 c3,3
If Takahashi’s statement is correct, print ‘Yes’; otherwise, print ‘No’.
1 0 1 2 1 2 1 0 1
Yes
Takahashi is correct, since there are possible sets of integers such as: a1=0,a2=1,a3=0,b1=1,b2=0,b3=1.
2 2 2 2 1 2 2 2 2
No
Takahashi is incorrect in this case.
0 8 8 0 8 8 0 8 8
Yes
1 8 6 2 9 7 0 7 7
Sample Output 4
No
题意 : 给你一个3*3的矩阵c,然后问你是否存在 6个数 : a1,a2,a3,b1,b2,b3使得 c[i][j] = ai + bj
分析:我们可以只枚举a1,根据第一列和第一行的矩阵的值,反推出 a2,a3,b1,b2,b3,然后在判断 c[2][3],c[2][2],c[3][3],c[3][2]是否符合,范围呢,你可以选择大些,我只选择了 [-1000,1000]
