Anaconda
下载anaconda bash Anaconda3-5.1.0-Linux-x86_64.sh注意 在安装的过程中,会问你安装路径,直接回车默认就可以了。有个地方问你是否将anaconda安装路径加入到环境变量(.bashrc)中,输入yes(默认的是no)
重启终端验证 conda --versionIpython notebook
pip3 install --upgrade pip pip3 install jupyter #启动 jupyter notebook库
pip install bs4scrapy框架
#Ubuntu sudo apt-get install python-pip sudo apt-get install python-dev sudo apt-get install libevent-dev sudo apt-get install libssl-dev sudo pip install scrapy scrapy version #安装完毕后查看scrapy版本 #Manjaro sudo pacman -S python-pip sudo pip install scrapy scrapy version #安装完毕后查看scrapy版本PlantomJS 下载http://phantomjs.org/download.html 安装
tar -xvf phantomjs-2.1.1-linux-x86_64.tar.bz2 sudo mv phantomjs-2.1.1-linux-x86_64 /usr/local/src/phantomjs sudo ln -sf /usr/local/src/phantomjs/bin/phantomjs /usr/local/bin/phantomjs检查是否安装成功
phantomjs -v库
pip install matplotlib sudo pip install seaborn pip install HoloViews pip install Altair pip install redis pip install bokeh pip install networkx pip install plotly pip install geoplotlib pip install folium pip install vincent pip install mpld3 pip install python-igraph pip install missingno可视化平台 superset
财经数据接口——tushare
pip install tushare技术分析库——talib
pip install ta-lib或者
wget http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz gunzip ta-lib-0.4.0-src.tar.gz tar -xvf ta-lib-0.4.0-src.tar cd ta-lib ./configure --prefix=/usr make sudo make install库
pip install -U scikit-learn人脸识别
sudo apt-get install -y git sudo apt-get install -y cmake sudo apt-get install -y python-pip sudo apt-get install libboost-all-dev git clone https://github.com/davisking/dlib.git cd dlib mkdir build cd build cmake .. -DDLIB_USE_CUDA=0 -DUSE_AVX_INSTRUCTIONS=1 cmake --build . cd .. python setup.py install --yes USE_AVX_INSTRUCTIONS --no DLIB_USE_CUDA pip install face_recognitiontensorflow——CPU版
#Ubuntu sudo apt-get install python3-pip python3-dev python-virtualenv virtualenv --system-site-packages -p python3 ~/tensorflow source ~/tensorflow/bin/activate #激活 Virtualenv 环境 easy_install -U pip pip3 install --upgrade tensorflow验证是否安装成功
# 在Python中输入 import tensorflow as tf hello = tf.constant('Hello, TensorFlow!') sess = tf.Session() print(sess.run(hello))如果系统输出以下内容,就说明安装成功
Hello, TensorFlow!