一、安装hadoop环境
不建议安装最新版本,可能会出问题。本文选择安装2.7.6版本。 请参考: https://blog.csdn.net/goodmentc/article/details/80946431
二、安装eclipse
2.1 下载eclipse
下载地址:https://www.eclipse.org/downloads/ 下载成功后,双击安装。 我下载的版本是:Version: Luna Service Release 2 (4.4.2)
2.2 下载hadoop的eclipse插件包
下载地址:https://download.csdn.net/download/goodmentc/10527519 解压文件,在release目录找到jar包(hadoop-eclipse-plugin-2.6.0.jar)放到eclipse安装目录下的plugins目录即可。不同版本的Hadoop需要选择相应的插件版本,如果不合适,可以多试几个插件包。
三、配置
1.打开eclipse,通过Window->Preferences进入进行设置,如下图: 选择将Hadoop的安装路径。
2.把map\reduce设置窗口调出显示,方便设置Window->Show View->Other找到Map/Reduce Locations,单击“ok”确定。 确定后,在eclipse中会多出一个视图:
点击如下“大象”图标,即可进入设置界面:
设置界面:
端口设置: 第一个端口:50010,根据启动Hadoop后的Namenode窗口,如下图: 标红色的地方: 127.0.0.1:50010
第二个端口: 9000 这是我在前面配置文件core-site.xml中配置的端口9000。
“Location name”一栏随便填个名字,然后点击“Finish”。
四、启动Hadoop
在Hadoop安装目录中sbin目录,执行命令:start-all.cmd 启动成功后,会自动打开4个终端窗口。 执行jps查看启动进程: 除了jps进程外,还有四个进程。 创建输入目录: D:\develop\hadoop-2.7.6\bin>hdfs dfs -mkdir hdfs://localhost:9000/testdir 上传一个文件: D:\develop\hadoop-2.7.6\bin>hadoop fs -put yarn.cmd hdfs://localhost:9000/testdir/input
五、创建工程
5.1 创建map/reduce工程wordcount
步骤略。
5.2 新建测试类MyWordCount
package hdp.test;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class MyWordCount {
public static class WordCountMapper extends Mapper<Object, Text, Text, IntWritable> {
private final IntWritable one =
new IntWritable(
1);
private Text word =
new Text();
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
StringTokenizer stn =
new StringTokenizer(value.toString());
while (stn.hasMoreTokens()) {
word.set(stn.nextToken());
context.write(word, one);
}
}
}
public static class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result =
new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum =
0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args)
throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf =
new Configuration();
String[] cliArgs =
new GenericOptionsParser(conf, args).getRemainingArgs();
if (cliArgs.length !=
2) {
System.err.println(
"Usage: mywordcount <in> <out>");
System.exit(
2);
}
Job myJob = Job.getInstance(conf,
"My first job");
myJob.setJarByClass(MyWordCount.class);
myJob.setMapperClass(WordCountMapper.class);
myJob.setReducerClass(WordCountReducer.class);
myJob.setCombinerClass(WordCountReducer.class);
myJob.setOutputKeyClass(Text.class);
myJob.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(myJob,
new Path(cliArgs[
0]));
FileOutputFormat.setOutputPath(myJob,
new Path(cliArgs[
1]));
boolean isSucced = myJob.waitForCompletion(
true);
System.out.println(
"result:" + isSucced);
System.exit(isSucced ?
0:
1);
}
}
代码说明: 数组String[] cliArgs其实是配置的运行参数:
[hdfs:
5.3 设置WordCount运行参数
右键wordcount工程,Run As->Run Configurations,填入参数: hdfs://localhost:9000/testdir/input hdfs://localhost:9000/testdir/out 如下图: 配置运行时的input和output两个参数,我这里把本地文件上传到了input目录(已存在),hdfs目录作为输出,其中out目录在hdfs中不存在,如果已经存在则先删除,或使用其他名字,否则运行时会报错。
5.4 运行程序
运行成功会打印出:result:true,结果如下图示:
六、遇到的错误
1.out目录已存在导致:
Exception in thread
"main" org.apache.hadoop.mapred.FileAlreadyExistsException: Output directory hdfs:
at org.apache.hadoop.mapreduce.lib.output.FileOutputFormat.checkOutputSpecs(FileOutputFormat.java:
146)
at org.apache.hadoop.mapreduce.JobSubmitter.checkSpecs(JobSubmitter.java:
266)
at org.apache.hadoop.mapreduce.JobSubmitter.submitJobInternal(JobSubmitter.java:
139)
at org.apache.hadoop.mapreduce.Job$
10.run(Job.java:
1290)
at org.apache.hadoop.mapreduce.Job$
10.run(Job.java:
1287)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Unknown Source)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:
1758)
at org.apache.hadoop.mapreduce.Job.submit(Job.java:
1287)
at org.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:
1308)
at hdp.test.MyWordCount.main(MyWordCount.java:
66)
程序执行成功后,再次执行,会报错。 原因:out目录已存在。解决:删除out目录,重新执行程序:
D:\develop\hadoop-
2.7.6\bin>hadoop fs -rm -r hdfs:
18/
07/
07 19:
10:
37 INFO fs.TrashPolicyDefault: Namenode trash configuration: Deletion interval =
0 minutes, Emptier interval =
0 minutes.
Deleted hdfs:
2.input目录不存在导致:
Exception in thread
"main" org.apache.hadoop.mapreduce.lib.input.InvalidInputException: Input path does not exist: hdfs:
at org.apache.hadoop.mapreduce.lib.input.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:
323)
at org.apache.hadoop.mapreduce.lib.input.FileInputFormat.listStatus(FileInputFormat.java:
265)
at org.apache.hadoop.mapreduce.lib.input.FileInputFormat.getSplits(FileInputFormat.java:
387)
at org.apache.hadoop.mapreduce.JobSubmitter.writeNewSplits(JobSubmitter.java:
301)
at org.apache.hadoop.mapreduce.JobSubmitter.writeSplits(JobSubmitter.java:
318)
at org.apache.hadoop.mapreduce.JobSubmitter.submitJobInternal(JobSubmitter.java:
196)
at org.apache.hadoop.mapreduce.Job$
10.run(Job.java:
1290)
at org.apache.hadoop.mapreduce.Job$
10.run(Job.java:
1287)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Unknown Source)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:
1758)
at org.apache.hadoop.mapreduce.Job.submit(Job.java:
1287)
at org.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:
1308)
at hdp.test.MyWordCount.main(MyWordCount.java:
66)
解决方法: 创建input目录 D:\develop\hadoop-2.7.6\bin>hadoop fs -mkdir hdfs://localhost:9000/testdir/input
七、其他
以上程序及流程亲自试验成功。 本文参考: https://blog.csdn.net/houjingjun/article/details/70198223 。 感谢!