最长递增子序列

xiaoxiao2021-02-28  107

对于动态规划问题,往往存在递推解决方法,这个问题也不例外。要求长度为i的序列的Ai{a1,a2,……,ai}最长递增子序列,需要先求出序列Ai-1{a1,a2,……,ai-1}中以各元素(a1,a2,……,ai-1)作为最大元素的最长递增序列,然后把所有这些递增序列与ai比较,如果某个长度为m序列的末尾元素aj(j<i)比ai要小,则将元素ai加入这个递增子序列,得到一个新的长度为m+1的新序列,否则其长度不变,将处理后的所有i个序列的长度进行比较,其中最长的序列就是所求的最长递增子序列。举例说明,对于序列A{35, 36, 39, 3, 15, 27, 6, 42}当处理到第九个元素(27)时,以35, 36, 39, 3, 15, 27, 6为最末元素的最长递增序列分别为     35     35,36     35,36,39     3     3,15     3,15,27     3,6 当新加入第10个元素42时,这些序列变为     35,42     35,36,42     35,36,39,42,     3,42     3,15,42     3,15,27,42     3,6,42

这其中最长的递增序列为(35,36,39,42)和(3,15,27,42),所以序列A的最长递增子序列的长度为4,同时在A中长度为4的递增子序列不止一个。

该算法的思想十分简单,如果要得出Ai序列的最长递增子序列,就需要计算出Ai-1的所有元素作为最大元素的最长递增序列,依次递推Ai-2,Ai-3,……,将此过程倒过来,即可得到递推算法,依次推出A1,A2,……,直到推出Ai为止,

#include<bits/stdc++.h> using namespace std; int a[100001],b[100001],c[10001]; int main(){ int n,i=0,l=0; cin>>n; for(int i=0;i<n;i++){ cin>>a[i]; } b[0]=1; c[0]=1; for(int j=1;j<n;j++){ b[j]=1;c[j]=1; for(int k=0;k<j;k++){ if(a[j]>a[k]&&b[k]+1>b[j]){ b[j]=b[k]+1; //cout<<j<<"="<<b[j]<<endl; } } } int mx=0;int mi=0; for(int j=0;j<n;j++){ if(b[j]>mx) mx=b[j]; } cout<<mx<<endl; } 计算出长度为length的array的最长递增子序列的长度,作为返回值返回,实际序列保存在result数组中,该函数中使用到了C99变长数组参数特性(这个特性比较赞),不支持C99的同学们可以用malloc来申请函数里面的两个数组变量。函数的时间复杂度为O(nn),下面我们来介绍可以将时间复杂度降为O(nlogn)改进算法。

在基本算法中,我们发现,当需要计算前i个元素的最长递增子序列时,前i-1个元素作为最大元素的各递增序列,无论是长度,还是最大元素值,都毫无规律可循,所以开始计算前i个元素的时候只能遍历前i-1个元素,来找到满足条件的j值,使得aj < ai,且在所有满足条件的j中,以aj作为最大元素的递增子序列最长。有没有更高效的方法,找到这样的元素aj呢,实际是有的,但是需要用到一个新概念。在之前我举的序列例子中,我们会发现,当计算到第10个元素时,前9个元素所形成最长子序列分别为

    35     35,36     35,36,39     3     3,15     3,15,27

    3,6

这其中长度为3的子序列有两个,长度为2的子序列有3个,长度为1的子序列2个,所以一个序列,长度为n的递增子序列可能不止一个,但是所有长度为n的子序列中,有一个子序列是比较特殊的,那就是最大元素最小的递增子序列(挺拗口的概念),在上述例子中,序列(3),(3,6),(3,5,27)就满足这样的性质,他们分别是长度为1,2,3的递增子序列中最大元素最小的(截止至处理第10个元素之前),随着元素的不断加入,满足条件的子序列会不断变化。如果将这些子序列按照长度由短到长排列,将他们的最大元素放在一起,形成新序列B{b1,b2,……bj},则序列B满足b1 < b2 < …… <bj。这个关系比较容易说明,假设bxy表示序列A中长度为x的递增序列中的第y个元素,显然,如果在序列B中存在元素bmm > bnn,且m < n则说明子序列Bn的最大元素小于Bm的最大元素,因为序列是严格递增的,所以在递增序列Bn中存在元素bnm < bnn,且从bn0到bnm形成了一个新的长度为m的递增序列,因为bmm > bnn,所以bmm > bnm,这就说明在序列B中还存在一个长度为m,最大元素为bnm < bmm的递增子序列,这与序列的定义,bmm是所有长度为m的递增序列中第m个元素最小的序列不符,所以序列B中的各元素严格递增。发现了如此的一个严格递增的序列,这让我们柳暗花明,可以利用此序列的严格递增性,利用二分查找,找到最大元素刚好小于aj的元素bk,将aj加入这个序列尾部,形成长度为k+1但是最大元素又小于bk+1的新序列,取代之前的bk+1,如果aj比Bn中的所有元素都要大,说明发现了以aj为最大元素,长度为n+1的递增序列,将aj做Bn+1的第n+1个元素。从b1依次递推,就可以在O(nlogn)的时间内找出序列A的最长递增子序列。

理论说明比较枯燥,来看一个例子,以序列{6,7,8,9,10,1,2,3,4,5,6}来说明改进算法的步骤:

程序开始时,最长递增序列长度为1(每个元素都是一个长度为1的递增序列),当处理第2个元素时发现7比最长递增序列6的最大元素还要大,所以将6,7结合生成长度为2的递增序列,说明已经发现了长度为2的递增序列,依次处理,到第5个元素(10),这一过程中B数组的变化过程是

    6     6,7     6,7,8     6,7,8,9     6,7,8,9,10

开始处理第6个元素是1,查找比1大的最小元素,发现是长度为1的子序列的最大元素6,说明1是最大元素更小的长度为1的递增序列,用1替换6,形成新数组1,7,8,9,10。然后查找比第7个元素(2)大的最小元素,发现7,说明存在长度为2的序列,其末元素2,比7更小,用2替换7,依次执行,直到所有元素处理完毕,生成新的数组1,2,3,4,5,最后将6加入B数组,形成长度为6的最长递增子序列.

这一过程中,B数组的变化过程是     1,7,8,9,10     1,2,8,9,10     1,2,3,9,10     1,2,3,4,10     1,2,3,4,5     1,2,3,4,5,6

当处理第10个元素(5)时,传统算法需要查看9个元素(6,7,8,9,10,1,2,3,4),而改进算法只需要用二分查找数组B中的两个元素(3, 4),可见改进算法还是很阴霸的。

下面是该算法的实现: #include<bits/stdc++.h> using namespace std; int a[10]={1,5,3,6,9,8,4,6,8,10}; int b[100]={0}; int binary_search(int n,int s){ //二分查找位置 int l=0; int r=s-1; int mid; while(l<r){ mid=(l+r)/2; if(n>b[mid]) l=mid+1; else if(n<mid) r=mid-1; else return mid; } return r; //返回值很重要 } int main(){ int l=0; b[l]=a[0]; for(int j=1;j<10;j++){ if(a[j]>b[l]){ b[++l]=a[j]; } else{ int k=binary_search(a[j],l+1); b[k]=a[j]; } } cout<<l+1<<endl; //输出记得加 1 }
转载请注明原文地址: https://www.6miu.com/read-26282.html

最新回复(0)