Given a data stream input of non-negative integers a1, a2, …, an, …, summarize the numbers seen so far as a list of disjoint intervals.
For example, suppose the integers from the data stream are 1, 3, 7, 2, 6, …, then the summary will be:
[1, 1] [1, 1], [3, 3] [1, 1], [3, 3], [7, 7] [1, 3], [7, 7] [1, 3], [6, 7]Follow up: What if there are lots of merges and the number of disjoint intervals are small compared to the data stream’s size?
思路: 给定一个数据流,输入一组非负整数a1, a2, …, an, …, 对截止到当前的不相交区间进行汇总。
利用TreeSet数据结构,将不相交区间Interval存储在TreeSet中。 TreeSet底层使用红黑树实现,可以用log(n)的代价实现元素查找。 每次执行addNum操作时,利用TreeSet找出插入元素val的左近邻元素floor(start值不大于val的最大Interval),以及右近邻元素higher(start值严格大于val的最小Interval) 然后根据floor, val, higher之间的关系决定是否对三者进行合并。
/** * Definition for an interval. * public class Interval { * int start; * int end; * Interval() { start = 0; end = 0; } * Interval(int s, int e) { start = s; end = e; } * } */ class SummaryRanges { /** Initialize your data structure here. */ private TreeSet<Interval> intervalSet; public SummaryRanges() { intervalSet = new TreeSet<Interval>(new Comparator<Interval>() { public int compare(Interval a, Interval b) { return a.start - b.start; } }); } public void addNum(int val) { Interval valInterval = new Interval(val, val); Interval floor = intervalSet.floor(valInterval); if (floor != null) { if (floor.end >= val) { return; } else if (floor.end + 1 == val) { valInterval.start = floor.start; intervalSet.remove(floor); } } Interval higher = intervalSet.higher(valInterval); if (higher != null && higher.start == val + 1) { valInterval.end = higher.end; intervalSet.remove(higher); } intervalSet.add(valInterval); } public List<Interval> getIntervals() { return Arrays.asList(intervalSet.toArray(new Interval[0])); } } /** * Your SummaryRanges object will be instantiated and called as such: * SummaryRanges obj = new SummaryRanges(); * obj.addNum(val); * List<Interval> param_2 = obj.getIntervals(); */