第一章,安装spark集群,测试和运行wordcount 案例

xiaoxiao2021-02-28  52

1.1下载spark

地址:https://mirrors.tuna.tsinghua.edu.cn/apache/spark/spark-2.3.0/

1.2上传解压;

xiaoye@ubuntu:~/Downloads$ lsapache-activemq-5.15.3-bin.tar.gz  hive-0.13.1-cdh5.2.0.tar.gzflume-ng-1.6.0-cdh5.10.1.tar.gz    spark-2.3.0-bin-hadoop2.7.tgzhadoop-2.5.0-cdh5.2.0.tar.gz       zookeeper-3.4.5-cdh5.10.2.tar.gz

xiaoye@ubuntu:~/Downloads$ tar -zxvf spark-2.3.0-bin-hadoop2.7.tgz -C ../

1.3为安装包建立一个软连接:

xiaoye@ubuntu:~$ ln -s spark-2.3.0-bin-hadoop2.7/ spark

1.4进入spark/conf修改配置文件

xiaoye@ubuntu:~$ cd sparkxiaoye@ubuntu:~/spark$ cd confxiaoye@ubuntu:~/spark/conf$ lsdocker.properties.template  metrics.properties.template   spark-env.sh.templatefairscheduler.xml.template  slaves.templatelog4j.properties.template   spark-defaults.conf.template

xiaoye@ubuntu:~/spark/conf$ 

复制spark-env.sh.template并重命名为spark-env.sh,并在文件最后添加配置内容

export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-amd64 export HADOOP_HOME=/home/xiaoye/hadoop export HADOOP_CONF_DIR=/home/xiaoye/hadoop/etc/hadoop export SPARK_WORKER_MEMORY=500m export SPARK_WORKER_CORES=1 export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=ubuntu:2181,ubuntu2:2181,ubuntu3:2181 -Dspark.deploy.zookeeper.dir=/spark"

解释:

集群搭建时配置的spark参数可能和现在的不一样,主要是考虑个人电脑配置问题,如果memory配置太大,机器运行很慢。 说明: -Dspark.deploy.recoveryMode=ZOOKEEPER    #说明整个集群状态是通过zookeeper来维护的,整个集群状态的恢复也是通过zookeeper来维护的。就是说用zookeeper做了spark的HA配置,Master(Active)挂掉的话,Master(standby)要想变成Master(Active)的话,Master(Standby)就要像zookeeper读取整个集群状态信息,然后进行恢复所有Worker和Driver的状态信息,和所有的Application状态信息; -Dspark.deploy.zookeeper.url=

buntu:2181,ubuntu2:2181,ubuntu3:2181 #将所有配置了zookeeper,并且在这台机器上有可能做master(Active)的机器都配置进来;(我用了3台,就配置了3台) 

-Dspark.deploy.zookeeper.dir=/spark 这里的dir和zookeeper配置文件zoo.cfg中的dataDir的区别??? -Dspark.deploy.zookeeper.dir是保存spark的元数据,保存了spark的作业运行状态; zookeeper会保存spark集群的所有的状态信息,包括所有的Workers信息,所有的Applactions信息,所有的Driver信息,如果集群 

复制slaves.template成slaves:

xiaoye@ubuntu:~/spark/conf$ cp slaves.template  slaves

修改slaves:

xiaoye@ubuntu:~/spark/conf$ vi slaves

ubuntu ubuntu2 ubuntu3

1.5 一台机子配置完后分发给其他节点

xiaoye@ubuntu:~$ scp -r spark-2.3.0-bin-hadoop2.7/ xiaoye@192.168.26.141:/home/xiaoye

xiaoye@ubuntu:~$ scp -r spark-2.3.0-bin-hadoop2.7/ xiaoye@192.168.26.142:/home/xiaoye

1.6为每台机子创建软连接

xiaoye@ubuntu2:~$ ln -s spark-2.3.0-bin-hadoop2.7/ spark

xiaoye@ubuntu3:~$ ln -s spark-2.3.0-bin-hadoop2.7/ spark

1.7为每台机子配置环境变量

xiaoye@ubuntu:~$ vim .bashrc

#Spark export SPARK_HOME=/home/xiaoye/spark export PATH=$PATH:$SPARK_HOME/bin

配置好后立即生效:

xiaoye@ubuntu:~$ source .bashrc

2试着启动spark集群

2.1启动zookeeper集群:

每台机子执行如下操作:

xiaoye@ubuntu:~$ ./zookeeper/sbin/zkServer.sh  startJMX enabled by defaultUsing config: /home/xiaoye/zookeeper/sbin/../conf/zoo.cfgStarting zookeeper ... STARTEDxiaoye@ubuntu:~$ ./zookeeper/sbin/zkServer.sh  statusJMX enabled by defaultUsing config: /home/xiaoye/zookeeper/sbin/../conf/zoo.cfg

Mode: leader

2.2启动hdfs:

在一个节点执行以下命令即可:

xiaoye@ubuntu:~$ ./hadoop/sbin/start-dfs.sh 18/06/09 21:36:31 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable Starting namenodes on [ubuntu ubuntu2] ubuntu: Warning: Permanently added 'ubuntu,192.168.26.140' (ECDSA) to the list of known hosts. ubuntu2: Warning: Permanently added 'ubuntu2,192.168.26.141' (ECDSA) to the list of known hosts. ubuntu2: starting namenode, logging to /home/xiaoye/hadoop/logs/hadoop-xiaoye-namenode-ubuntu2.out ubuntu: starting namenode, logging to /home/xiaoye/hadoop/logs/hadoop-xiaoye-namenode-ubuntu.out ubuntu2: Warning: Permanently added 'ubuntu2,192.168.26.141' (ECDSA) to the list of known hosts. ubuntu: Warning: Permanently added 'ubuntu,192.168.26.140' (ECDSA) to the list of known hosts. ubuntu3: Warning: Permanently added 'ubuntu3,192.168.26.142' (ECDSA) to the list of known hosts. ubuntu: starting datanode, logging to /home/xiaoye/hadoop/logs/hadoop-xiaoye-datanode-ubuntu.out ubuntu2: starting datanode, logging to /home/xiaoye/hadoop/logs/hadoop-xiaoye-datanode-ubuntu2.out ubuntu3: starting datanode, logging to /home/xiaoye/hadoop/logs/hadoop-xiaoye-datanode-ubuntu3.out Starting journal nodes [ubuntu ubuntu2 ubuntu3] ubuntu3: Warning: Permanently added 'ubuntu3,192.168.26.142' (ECDSA) to the list of known hosts. ubuntu: Warning: Permanently added 'ubuntu,192.168.26.140' (ECDSA) to the list of known hosts. ubuntu2: Warning: Permanently added 'ubuntu2,192.168.26.141' (ECDSA) to the list of known hosts. ubuntu: starting journalnode, logging to /home/xiaoye/hadoop/logs/hadoop-xiaoye-journalnode-ubuntu.out ubuntu3: starting journalnode, logging to /home/xiaoye/hadoop/logs/hadoop-xiaoye-journalnode-ubuntu3.out ubuntu2: starting journalnode, logging to /home/xiaoye/hadoop/logs/hadoop-xiaoye-journalnode-ubuntu2.out 18/06/09 21:36:58 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable Starting ZK Failover Controllers on NN hosts [ubuntu ubuntu2] ubuntu2: Warning: Permanently added 'ubuntu2,192.168.26.141' (ECDSA) to the list of known hosts. ubuntu: Warning: Permanently added 'ubuntu,192.168.26.140' (ECDSA) to the list of known hosts. ubuntu2: starting zkfc, logging to /home/xiaoye/hadoop/logs/hadoop-xiaoye-zkfc-ubuntu2.out ubuntu: starting zkfc, logging to /home/xiaoye/hadoop/logs/hadoop-xiaoye-zkfc-ubuntu.out xiaoye@ubuntu:~$ jps \2746 NameNode 3252 DFSZKFailoverController 2573 QuorumPeerMain 2861 DataNode 3324 Jps 3060 JournalNode

2.3启动spark

在三个节点分别执行以下命令:

xiaoye@ubuntu:~$ ./spark/sbin/start-all.sh org.apache.spark.deploy.master.Master running as process 3359. Stop it first. localhost: Warning: Permanently added 'localhost' (ECDSA) to the list of known hosts. localhost: starting org.apache.spark.deploy.worker.Worker, logging to /home/xiaoye/spark/logs/spark-xiaoye-org.apache.spark.deploy.worker.Worker-1-ubuntu.out

好了之后jps分别查看启动的进程:

leader节点:

xiaoye@ubuntu:~$ jps 2746 NameNode 3359 Master 3252 DFSZKFailoverController 3550 Worker 2573 QuorumPeerMain 2861 DataNode 3583 Jps 3060 JournalNode

其他两个从节点:

xiaoye@ubuntu2:~$ jps 2488 JournalNode 2748 Worker 2784 Jps 2654 Master 2229 QuorumPeerMain 2377 DataNode xiaoye@ubuntu3:~$ jps 2510 Master 2582 Worker 2298 DataNode 2402 JournalNode 2665 Jps 2198 QuorumPeerMain

3,验证是否成功启动

在web上查看:

4,验证HA高可用

动干掉ubuntu上面的Master进程,观察是否会自动进行切换

xiaoye@ubuntu:~$ jps 3656 Jps 2746 NameNode 3359 Master 3252 DFSZKFailoverController 2573 QuorumPeerMain 2861 DataNode 3060 JournalNode xiaoye@ubuntu:~$ kill -9 3359 xiaoye@ubuntu:~$ jps 2746 NameNode 3252 DFSZKFailoverController 2573 QuorumPeerMain 2861 DataNode 3666 Jps 3060 JournalNode

查看web:

再看看其他两个节点有没有成功上位成live的:

ubuntu3自动成为live节点说明成功。

5,执行spark程序 on standalone

5.1执行第一个spark程序,执行的是spark自带的案例:

在master下执行:

xiaoye@ubuntu3:~$ /home/xiaoye/spark/bin/spark-submit --class org.apache.spark.examples.SparkPi --master spark://ubuntu3:7077 --executor-memory 500m --total-executor-cores 1 /home/xiaoye/spark/examples/jars/spark-examples_2.11-2.3.0.jar 100

其中--master spark://ubuntu3:7077是下图的位置的结果:

运行结果:

至于含义我们以后再讨论

5.2 启动spark shell

xiaoye@ubuntu3:~$ /home/xiaoye/spark/bin/spark-shell \ > --master spark://ubuntu3:7077 \ > --executor-memory 500m > --total-executor-cores 1

参数说明:

--master spark://ubuntu3:7077 指定Master的地址

--executor-memory 500m:指定每个worker可用内存为500m

--total-executor-cores 1: 指定整个集群使用的cup核数为1个

xiaoye@ubuntu3:~$ xiaoye@ubuntu3:~$ /home/xiaoye/spark/bin/spark-shell \ > --master spark://ubuntu3:7077 \ > --executor-memory 500m --^H^H2018-06-09 23:21:53 WARN Utils:66 - Your hostname, ubuntu3 resolves to a loopback address: 127.0.1.1; using 192.168.26.142 instead (on interface ens33) 2018-06-09 23:21:53 WARN Utils:66 - Set SPARK_LOCAL_IP if you need to bind to another address 2018-06-09 23:21:55 WARN NativeCodeLoader:62 - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable Setting default log level to "WARN". To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel). Spark context Web UI available at http://ubuntu3:4040 Spark context available as 'sc' (master = spark://ubuntu3:7077, app id = app-20180609232223-0001). Spark session available as 'spark'. Welcome to ____ __ / __/__ ___ _____/ /__ _\ \/ _ \/ _ `/ __/ '_/ /___/ .__/\_,_/_/ /_/\_\ version 2.3.0 /_/ Using Scala version 2.11.8 (OpenJDK 64-Bit Server VM, Java 1.8.0_162) Type in expressions to have them evaluated. Type :help for more information. scala> -- scala>

注意:

如果启动spark shell时没有指定master地址,但是也可以正常启动spark shell和执行spark shell中的程序,其实是启动了spark的local模式,该模式仅在本机启动一个进程,没有与集群建立联系。

Spark Shell中已经默认将SparkContext类初始化为对象sc。用户代码如果需要用到,则直接应用sc即可

Spark Shell中已经默认将SparkSQl类初始化为对象spark。用户代码如果需要用到,则直接应用spark即可

5.3在spark shell中编写word count 程序

创建一个文件,随便写点内容:

xiaoye@ubuntu3:~$ cat classes/aa.txt hello world! aa aa d d dg g

然后上传到hdfs中:

xiaoye@ubuntu3:~/hadoop$ ./hadoop/ fs -mkdir -p /spark -bash: ./hadoop/: Is a directory xiaoye@ubuntu3:~/hadoop$ hadoop fs -mkdir -p /spark 18/06/09 23:32:33 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable xiaoye@ubuntu3:~/hadoop$ hadoop fs -ls /spark 18/06/09 23:33:12 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable xiaoye@ubuntu3:~/hadoop$ hadoop fs -put classes/aa.txt /spark 18/06/09 23:34:04 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable put: `classes/aa.txt': No such file or directory xiaoye@ubuntu3:~/hadoop$ ls bin etc hadoop lib sbin tmp bin-mapreduce1 examples include libexec share cloudera examples-mapreduce1 journal logs src xiaoye@ubuntu3:~/hadoop$ cd .. xiaoye@ubuntu3:~$ hadoop fs -put classes/aa.txt /spark 18/06/09 23:34:33 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable xiaoye@ubuntu3:~$ hadoop fs -ls /spark 18/06/09 23:34:48 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable Found 1 items -rw-r--r-- 2 xiaoye supergroup 29 2018-06-09 23:34 /spark/aa.txt

5.4在spark shell中用scala编写spark程序,按空格分割数据

scala> sc.textFile("/spark/aa.txt").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).saveAsTextFile("/spark/out")

说明:

sc是SparkContext对象,该对象是提交spark程序的入口

textFile("/spark/aa.txt")是hdfs中读取数据

flatMap(_.split(" "))先map再压平

map((_,1))将单词和1构成元组

reduceByKey(_+_)按照key进行reduce,并将value累加

saveAsTextFile("/spark/out")将结果写入到hdfs中

执行完后,查看hdfs的执行结果:

xiaoye@ubuntu3:~$ hadoop fs -cat /spark/out/p* 18/06/09 23:52:42 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable (d,2) (aa,2) (hello,1) (world!,1) (dg,1) (g,1)

执行结果跟我们相要的结果是一样的。

6,执行spark程序 on Yarn

首先要成功启动zookeeper集群、HDFS集群、YARN集群

启动spark on Yarn

xiaoye@ubuntu3:~$

spark-shell --master yarn --deploy-mode client

启动时间比较长,成功启动:

启动的进程如下:

xiaoye@ubuntu3:~$ jps 2298 DataNode 5150 ExecutorLauncher 3950 ResourceManager 2402 JournalNode 5375 Jps 5275 CoarseGrainedExecutorBackend 5274 CoarseGrainedExecutorBackend 4092 NodeManager 2198 QuorumPeerMain 4424 SparkSubmit
转载请注明原文地址: https://www.6miu.com/read-2624652.html

最新回复(0)