from 子句--执行顺序为从后往前、从右到左表名(最后面的那个表名为驱动表,执行顺序为从后往前, 所以数据量较少的表尽量放后)
oracle 的解析器按照从右到左的顺序处理,FROM 子句中的表名,FROM 子句中写在最后的表(基础表 driving table)将被最先处理,即最后的表为驱动表,在FROM 子句中包含多个表的情况下,你必须选择记录条数最少的表作为基础表。如果有3 个以上的表连接查询, 那就需要选择交叉表(intersection table)作为基础表, 交叉表是指被其他表所引用的表
多表连接时,使用表的别名并把别名前缀于每个Column上。可以减少解析的时间并减少那些由Column 歧义引起的语法错误.
▼
▼
where子句--执行顺序为自下而上、从右到左
ORACLE 采用自下而上从右到左的顺序解析Where 子句,根据这个原理,表之间的连接必须写在其他Where 条件之前, 可以过滤掉最大数量记录的条件必须写在Where 子句的末尾。
▼
▼
group by--执行顺序从左往右分组
提高GROUP BY 语句的效率, 可以通过将不需要的记录在GROUP BY 之前过滤掉。即在GROUP BY前使用WHERE来过虑,而尽量避免GROUP BY后再HAVING过滤。
▼
▼
having 子句----很耗资源,尽量少用
避免使用HAVING 子句, HAVING 只会在检索出所有记录之后才对结果集进行过滤. 这个处理需要排序,总计等操作.
如果能通过Where 子句在GROUP BY前限制记录的数目,那就能减少这方面的开销.(非oracle 中)on、where、having 这三个都可以加条件的子句中,on 是最先执行,where 次之,having 最后,因为on 是先把不符合条件的记录过滤后才进行统计,它就可以减少中间运算要处理的数据,按理说应该速度是最快的,
where 也应该比having 快点的,因为它过滤数据后才进行sum,在两个表联接时才用on 的,所以在一个表的时候,就剩下where 跟having比较了。
在这单表查询统计的情况下,如果要过滤的条件没有涉及到要计算字段,那它们的结果是一样的,只是where 可以使用rushmore 技术,而having 就不能,在速度上后者要慢。如果要涉及到计算的字段,就表示在没计算之前,这个字段的值是不确定的,where 的作用时间是在计算之前就完成的,而having 就是在计算后才起作用的,所以在这种情况下,两者的结果会不同。
在多表联接查询时,on 比where 更早起作用。系统首先根据各个表之间的联接条件,把多个表合成一个临时表后,再由where 进行过滤,然后再计算,计算完后再由having 进行过滤。
由此可见,要想过滤条件起到正确的作用,首先要明白这个条件应该在什么时候起作用,然后再决定放在那里。
▼
▼select子句--少用*号,尽量取字段名称。
ORACLE 在解析的过程中, 会将依次转换成所有的列名, 这个工作是通过查询数据字典完成的, 使用列名意味着将减少消耗时间。
sql 语句用大写的;因为 oracle 总是先解析 sql 语句,把小写的字母转换成大写的再执行
▼
▼ order by子句--执行顺序为从左到右排序,很耗资源