opencv3.0机器学习之SVM使用(二类线性不可分)

xiaoxiao2021-02-28  39

之前找到一些代码都是2.X版本的,很多都不能运行,我大致修改了一下,全部能跑动了,2.x版本都注释了,下面替换为新的,可以对照修改。 /******************************* ** 作者: 周小小 ** 描述: *******************************/ #include <iostream> #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/ml/ml.hpp> #include <opencv2/opencv.hpp> #define NTRAINING_SAMPLES 100 // Number of training samples per class #define FRAC_LINEAR_SEP 0.9f // Fraction of samples which compose the linear separable part using namespace cv; using namespace std; int main() { // Data for visual representation const int WIDTH = 512, HEIGHT = 512; Mat I = Mat::zeros(HEIGHT, WIDTH, CV_8UC3); //--------------------- 1. Set up training data randomly --------------------------------------- Mat trainData(2 * NTRAINING_SAMPLES, 2, CV_32FC1);//Float 32bits Mat labels(2 * NTRAINING_SAMPLES, 1, CV_32SC1);//Signed 32bits 有符号的 //为了方便起见,将这个函数的代码的其他部分删除了。 //首先解释一下:samples就是训练的数据。response就是标签。 //通过上面,我们知道再来用Mat的时候,只能用CV_32F和CV_32S。 //由于labels是正负一所以为有符号的。 RNG rng(100); // Random value generation class // Set up the linearly separable part of the training data int nLinearSamples = (int)(FRAC_LINEAR_SEP * NTRAINING_SAMPLES); // Generate random points for the class 1 Mat trainClass = trainData.rowRange(0, nLinearSamples); // The x coordinate of the points is in [0, 0.4) Mat c = trainClass.colRange(0, 1); rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(0.4 * WIDTH)); // The y coordinate of the points is in [0, 1) c = trainClass.colRange(1, 2); rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT)); // Generate random points for the class 2 trainClass = trainData.rowRange(2 * NTRAINING_SAMPLES - nLinearSamples, 2 * NTRAINING_SAMPLES); // The x coordinate of the points is in [0.6, 1] c = trainClass.colRange(0, 1); rng.fill(c, RNG::UNIFORM, Scalar(0.6*WIDTH), Scalar(WIDTH)); // The y coordinate of the points is in [0, 1) c = trainClass.colRange(1, 2); rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT)); //------------------ Set up the non-linearly separable part of the training data --------------- // Generate random points for the classes 1 and 2 trainClass = trainData.rowRange(nLinearSamples, 2 * NTRAINING_SAMPLES - nLinearSamples); // The x coordinate of the points is in [0.4, 0.6) c = trainClass.colRange(0, 1); rng.fill(c, RNG::UNIFORM, Scalar(0.4*WIDTH), Scalar(0.6*WIDTH)); // The y coordinate of the points is in [0, 1) c = trainClass.colRange(1, 2); rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT)); //------------------------- Set up the labels for the classes --------------------------------- labels.rowRange(0, NTRAINING_SAMPLES).setTo(1); // Class 1 labels.rowRange(NTRAINING_SAMPLES, 2 * NTRAINING_SAMPLES).setTo(2); // Class 2 //------------------------ 2. Set up the support vector machines parameters -------------------- cv::Ptr<cv::ml::SVM> svm = cv::ml::SVM::create(); //CvSVMParams params; svm->setType(cv::ml::SVM::Types::C_SVC);//类型 //params.svm_type = SVM::C_SVC; //params.C = 0.1; svm->setC(0.1); //params.kernel_type = SVM::LINEAR; svm->setKernel(cv::ml::SVM::KernelTypes::LINEAR);//核函数类型 //params.term_crit = TermCriteria(CV_TERMCRIT_ITER, (int)1e7, 1e-6); svm->setTermCriteria(cv::TermCriteria(cv::TermCriteria::MAX_ITER, (int)1e7, 1e-6));//算法终止条件 //------------------------ 3. Train the svm ---------------------------------------------------- cout << "Starting training process" << endl; /*for (int i = 0; i<trainData.rows; i++) { for (int j = 0; j<trainData.cols; j++) { cout << (int)trainData.at<float>(i, j) << endl; } }*/ //CvSVM svm; //svm.train(trainData, labels, Mat(), Mat(), params); svm->train(trainData, cv::ml::SampleTypes::ROW_SAMPLE, labels); //svm->train(trainData, cv::ml::SampleTypes::ROW_SAMPLE, labels); cout << "Finished training process" << endl; //------------------------ 4. Show the decision regions ---------------------------------------- Vec3b green(0, 100, 0), blue(100, 0, 0); for (int i = 0; i < I.rows; ++i) for (int j = 0; j < I.cols; ++j) { Mat sampleMat = (Mat_<float>(1, 2) << i, j); float response = svm->predict(sampleMat); if (response == 1) I.at<Vec3b>(j, i) = green; else if (response == 2) I.at<Vec3b>(j, i) = blue; } //----------------------- 5. Show the training data -------------------------------------------- int thick = -1; int lineType = 8; float px, py; // Class 1 for (int i = 0; i < NTRAINING_SAMPLES; ++i) { px = trainData.at<float>(i, 0); py = trainData.at<float>(i, 1); circle(I, Point((int)px, (int)py), 3, Scalar(0, 255, 0), thick, lineType); } // Class 2 for (int i = NTRAINING_SAMPLES; i <2 * NTRAINING_SAMPLES; ++i) { px = trainData.at<float>(i, 0); py = trainData.at<float>(i, 1); circle(I, Point((int)px, (int)py), 3, Scalar(255, 0, 0), thick, lineType); } //------------------------- 6. Show support vectors -------------------------------------------- thick = 2; lineType = 8; //int x = svm.get_support_vector_count(); cv::Mat sv = svm->getSupportVectors(); for (int i = 0; i <sv.rows; ++i) { const float* v = sv.ptr<float>(i); circle(I, Point((int)v[0], (int)v[1]), 6, Scalar(128, 128, 128), thick, lineType); } imwrite("result.png", I); // save the Image imshow("Two classes of linear nonseparable problems", I); // show it to the user waitKey(0); }
转载请注明原文地址: https://www.6miu.com/read-2624420.html

最新回复(0)