欧拉计划 第四十五题

xiaoxiao2021-02-28  56

Triangle, pentagonal, and hexagonal numbers are generated by the following formulae: Triangle    T*n*=*n*(*n*+1)/2        1, 3, 6, 10, 15, ...   Pentagonal P*n*=*n*(3*n*−1)/2    1, 5, 12, 22, 35, ...  Hexagonal  H*n*=*n*(2*n*−1)       1, 6, 15, 28, 45, ...  It can be verified that T285 = P165 = H143 = 40755. Find the next triangle number that is also pentagonal and hexagonal. 三角形,五角形和六角形数字由以下公式生成:  三角形       T *n* = *n*(*n* +1)/ 2          1,3,6,10,15 ......    五角形       P *n* = *n*(3 *n* -1)/ 2       1,5,12,22,35 ......    六角形       H *n* = *n*(2 *n* -1)           1,6,15,28,45,......  可以证实T 285 = P 165 = H 143 = 40755。

找到下一个满足三角形 五角形 六角形的数字。

#include <stdio.h> #include <inttypes.h> int is_Pentagonal(int64_t x){ int64_t min = 1, max = x, mid; while(min <= max){ mid = (min + max) / 2; int64_t pen = mid * (3 * mid - 1) / 2; if(pen == x) return 1; if(pen < x) min = mid + 1; else max = mid - 1; } return 0; } int main(){ int64_t n = 145; while(!is_Pentagonal(n * (2 * n - 1))) n++; printf("%"PRId64"\n", n * (2 * n - 1)); return 0; }
转载请注明原文地址: https://www.6miu.com/read-2624182.html

最新回复(0)