lab-10-4-mnist

xiaoxiao2021-02-28  33

import tensorflow as tf import random # import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data tf.set_random_seed(777) # reproducibility mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # Check out https://www.tensorflow.org/get_started/mnist/beginners for # more information about the mnist dataset # parameters learning_rate = 0.001 training_epochs = 15 batch_size = 100 # input place holders X = tf.placeholder(tf.float32, [None, 784]) Y = tf.placeholder(tf.float32, [None, 10]) # weights & bias for nn layers # http://stackoverflow.com/questions/33640581/how-to-do-xavier-initialization-on-tensorflow W1 = tf.get_variable("W1", shape=[784, 512], initializer=tf.contrib.layers.xavier_initializer()) b1 = tf.Variable(tf.random_normal([512])) L1 = tf.nn.relu(tf.matmul(X, W1) + b1) W2 = tf.get_variable("W2", shape=[512, 512], initializer=tf.contrib.layers.xavier_initializer()) b2 = tf.Variable(tf.random_normal([512])) L2 = tf.nn.relu(tf.matmul(L1, W2) + b2) W3 = tf.get_variable("W3", shape=[512, 512], initializer=tf.contrib.layers.xavier_initializer()) b3 = tf.Variable(tf.random_normal([512])) L3 = tf.nn.relu(tf.matmul(L2, W3) + b3) W4 = tf.get_variable("W4", shape=[512, 512], initializer=tf.contrib.layers.xavier_initializer()) b4 = tf.Variable(tf.random_normal([512])) L4 = tf.nn.relu(tf.matmul(L3, W4) + b4) W5 = tf.get_variable("W5", shape=[512, 10], initializer=tf.contrib.layers.xavier_initializer()) b5 = tf.Variable(tf.random_normal([10])) hypothesis = tf.matmul(L4, W5) + b5 # define cost/loss & optimizer cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits( logits=hypothesis, labels=Y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # initialize sess = tf.Session() sess.run(tf.global_variables_initializer()) # train my model for epoch in range(training_epochs): avg_cost = 0 total_batch = int(mnist.train.num_examples / batch_size) for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) feed_dict = {X: batch_xs, Y: batch_ys} c, _ = sess.run([cost, optimizer], feed_dict=feed_dict) avg_cost += c / total_batch print('Epoch:', 'd' % (epoch + 1), 'cost =', '{:.9f}'.format(avg_cost)) print('Learning Finished!') # Test model and check accuracy correct_prediction = tf.equal(tf.argmax(hypothesis, 1), tf.argmax(Y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print('Accuracy:', sess.run(accuracy, feed_dict={ X: mnist.test.images, Y: mnist.test.labels})) # Get one and predict r = random.randint(0, mnist.test.num_examples - 1) print("Label: ", sess.run(tf.argmax(mnist.test.labels[r:r + 1], 1))) print("Prediction: ", sess.run( tf.argmax(hypothesis, 1), feed_dict={X: mnist.test.images[r:r + 1]})) # plt.imshow(mnist.test.images[r:r + 1]. # reshape(28, 28), cmap='Greys', interpolation='nearest') # plt.show() ''' Epoch: 0001 cost = 0.266061549 Epoch: 0002 cost = 0.080796588 Epoch: 0003 cost = 0.049075800 Epoch: 0004 cost = 0.034772298 Epoch: 0005 cost = 0.024780529 Epoch: 0006 cost = 0.017072763 Epoch: 0007 cost = 0.014031383 Epoch: 0008 cost = 0.013763446 Epoch: 0009 cost = 0.009164047 Epoch: 0010 cost = 0.008291388 Epoch: 0011 cost = 0.007319742 Epoch: 0012 cost = 0.006434021 Epoch: 0013 cost = 0.005684378 Epoch: 0014 cost = 0.004781207 Epoch: 0015 cost = 0.004342310 Learning Finished! Accuracy: 0.9742
转载请注明原文地址: https://www.6miu.com/read-2623646.html

最新回复(0)