下面直接换个有隐藏层的BP:100个隐藏节点,tanh做激活函数: 代码如下:
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #mnist已经作为官方的例子,做好了数据下载,分割,转浮点等一系列工作,源码在tensorflow源码中都可以找到 mnist = input_data.read_data_sets('MNIST_data', one_hot=True) # 配置每个 GPU 上占用的内存的比例 # 没有GPU直接sess = tf.Session() gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.95) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) #每个批次的大小 batch_size = 100 #定义训练轮数据 train_epoch = 10 #定义每n轮输出一次 test_epoch_n = 1 #计算一共有多少批次 n_batch = mnist.train.num_examples // batch_size print("batch_size="+str(batch_size)+"n_batch="+str(n_batch)) #占位符,定义了输入,输出 x = tf.placeholder(tf.float32,[None, 784]) y = tf.placeholder(tf.float32,[None, 10]) #权重和偏置,使用0初始化 W1 = tf.Variable(tf.truncated_normal([784,100],stddev=0.1)) b1 = tf.Variable(tf.zeros([100])) L1 = tf.nn.tanh(tf.matmul(x,W1)+b1) W2 = tf.Variable(tf.truncated_normal([100,10],stddev=0.1)) b2 = tf.Variable(tf.zeros([10])) L2 = tf.nn.tanh(tf.matmul(L1,W2)+b2) #这里定义的网络结构 prediction = tf.nn.softmax(L2) #损失函数是交叉熵 cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction)) #训练方法: #train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) train_step = tf.train.AdamOptimizer(1e-2).minimize(cross_entropy) #初始化sess中所有变量 init = tf.global_variables_initializer() sess.run(init) MaxACC = 0#最好的ACC saver = tf.train.Saver() #训练n个epoch for epoch in range(train_epoch): for batch in range(n_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) sess.run(train_step, feed_dict = {x: batch_xs, y: batch_ys}) if(0==(epoch%test_epoch_n)):#每若干次预测test一次 #计算test集的准确率 correct_prediction = tf.equal(tf.argmax(prediction,1), tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) now_acc=sess.run(accuracy, feed_dict={x:mnist.test.images, y: mnist.test.labels}) print('epoch=',epoch,'ACC=',now_acc,'train acc =',sess.run(accuracy, feed_dict={x:mnist.train.images, y: mnist.train.labels})) if(now_acc>MaxACC): MaxACC = now_acc saver.save(sess, "Model/ModelSoftmax.ckpt") print('Save model! Now ACC=',MaxACC) #计算最终test集的准确率 correct_prediction = tf.equal(tf.argmax(prediction,1), tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print('Train OK! epoch=',epoch,'ACC=',sess.run(accuracy, feed_dict={x:mnist.test.images, y: mnist.test.labels})) #关闭sess sess.close() #读取模型 gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.95) with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess: saver.restore(sess, "./Model/ModelSoftmax.ckpt") # 注意此处路径前添加"./" print('Load Model OK!') print('ACC=',sess.run(accuracy, feed_dict={x:mnist.test.images, y: mnist.test.labels}))最后结果: epoch= 0 ACC= 0.9566 train acc = 0.964236 Save model! Now ACC= 0.9566 epoch= 1 ACC= 0.9534 train acc = 0.961218 epoch= 2 ACC= 0.9582 train acc = 0.966436 Save model! Now ACC= 0.9582 epoch= 3 ACC= 0.9558 train acc = 0.964545 epoch= 4 ACC= 0.9573 train acc = 0.9676 epoch= 5 ACC= 0.9572 train acc = 0.965782 epoch= 6 ACC= 0.9605 train acc = 0.970691 Save model! Now ACC= 0.9605 epoch= 7 ACC= 0.9538 train acc = 0.967218 epoch= 8 ACC= 0.9595 train acc = 0.9688 epoch= 9 ACC= 0.9581 train acc = 0.968018 Train OK! epoch= 9 ACC= 0.9581 实验开始: 1)激活函数换成relu+relu,acc=0.5857,为啥变烂了? 2)激活函数换成tanh+relu,acc=0.9582 3)激活函数换成relu+tanh,acc=0.9582 4)激活函数换成tanh+relu,acc=0.9626 5)激活函数换成sigmoid+sigmoid,acc=0.9679 6)激活函数换成sigmoid+relu,acc=0.3853,烂! 7)激活函数换成sigmoid+tanh,acc=0.7853 8)修改偏置
b1 = tf.Variable(tf.zeros([100])+0.1)激活函数换成relu+relu,acc= 0.8658,说明relu一定要避免死节点的问题! 8)换成784->400->100->10,sigmoid+sigmoid+sigmoid ACC= 0.9753!说明网络结构的影响非常大! 9)784->400->100->10,batch_size = 20 acc=0.7896,可见batch_size影响也是很大的 10)784->400->100->10,batch_size = 200 acc=0.979 11)换成784->400->200->10,sigmoid+sigmoid+sigmoid ACC= 0.9772!说明网络越复杂,拟合能力越强,但此时容易出现过拟合情况
