1、数据集
table_scene_lms400.pcd
2、代码
#include <pcl/ModelCoefficients.h>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/filters/extract_indices.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/features/normal_3d.h>
#include <pcl/kdtree/kdtree.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/segmentation/extract_clusters.h>
int
main (
int argc,
char** argv)
{
pcl::PCDReader reader;
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (
new pcl::PointCloud<pcl::PointXYZ>), cloud_f (
new pcl::PointCloud<pcl::PointXYZ>);
reader.read (
"table_scene_lms400.pcd", *cloud);
std::
cout <<
"PointCloud before filtering has: " << cloud->points.size () <<
" data points." <<
std::endl;
pcl::VoxelGrid<pcl::PointXYZ> vg;
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (
new pcl::PointCloud<pcl::PointXYZ>);
vg.setInputCloud (cloud);
vg.setLeafSize (
0.01f,
0.01f,
0.01f);
vg.filter (*cloud_filtered);
std::
cout <<
"PointCloud after filtering has: " << cloud_filtered->points.size () <<
" data points." <<
std::endl;
pcl::SACSegmentation<pcl::PointXYZ> seg;
pcl::PointIndices::Ptr inliers (
new pcl::PointIndices);
pcl::ModelCoefficients::Ptr coefficients (
new pcl::ModelCoefficients);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_plane (
new pcl::PointCloud<pcl::PointXYZ> ());
pcl::PCDWriter writer;
seg.setOptimizeCoefficients (
true);
seg.setModelType (pcl::SACMODEL_PLANE);
seg.setMethodType (pcl::SAC_RANSAC);
seg.setMaxIterations (
100);
seg.setDistanceThreshold (
0.02);
int i=
0, nr_points = (
int) cloud_filtered->points.size ();
while (cloud_filtered->points.size () >
0.3 * nr_points)
{
seg.setInputCloud (cloud_filtered);
seg.segment (*inliers, *coefficients);
if (inliers->indices.size () ==
0)
{
std::
cout <<
"Could not estimate a planar model for the given dataset." <<
std::endl;
break;
}
pcl::ExtractIndices<pcl::PointXYZ> extract;
extract.setInputCloud (cloud_filtered);
extract.setIndices (inliers);
extract.setNegative (
false);
extract.filter (*cloud_plane);
std::
cout <<
"PointCloud representing the planar component: " << cloud_plane->points.size () <<
" data points." <<
std::endl;
extract.setNegative (
true);
extract.filter (*cloud_f);
*cloud_filtered = *cloud_f;
}
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (
new pcl::search::KdTree<pcl::PointXYZ>);
tree->setInputCloud (cloud_filtered);
std::
vector<pcl::PointIndices> cluster_indices;
pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
ec.setClusterTolerance (
0.02);
ec.setMinClusterSize (
100);
ec.setMaxClusterSize (
25000);
ec.setSearchMethod (tree);
ec.setInputCloud (cloud_filtered);
ec.extract (cluster_indices);
int j =
0;
for (
std::
vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (
new pcl::PointCloud<pcl::PointXYZ>);
for (
std::
vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); ++pit)
cloud_cluster->points.push_back (cloud_filtered->points[*pit]);
cloud_cluster->width = cloud_cluster->points.size ();
cloud_cluster->height =
1;
cloud_cluster->is_dense =
true;
std::
cout <<
"PointCloud representing the Cluster: " << cloud_cluster->points.size () <<
" data points." <<
std::endl;
std::
stringstream ss;
ss <<
"cloud_cluster_" << j <<
".pcd";
writer.write<pcl::PointXYZ> (ss.str (), *cloud_cluster,
false);
j++;
}
return (
0);
}