1.架构处理流程图
2.日志产生器开发并结合log4j完成日志的输出
test\java
LoggerGenerator.java
import org.apache.log4j.Logger;/** * 模拟日志产生 */public class LoggerGenerator { private static Logger logger = Logger.getLogger(LoggerGenerator.class.getName()); public static void main(String[] args) throws Exception{ int index = 0; while(true) { Thread.sleep(1000); logger.info("value : " + index++); } }
}
test\resources
log4j.properties
log4j.rootLogger=INFO,stdout,flumelog4j.appender.stdout = org.apache.log4j.ConsoleAppenderlog4j.appender.stdout.target = System.outlog4j.appender.stdout.layout=org.apache.log4j.PatternLayoutlog4j.appender.stdout.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss,SSS} [%t] [%c] [%p] - %m%nlog4j.appender.flume = org.apache.flume.clients.log4jappender.Log4jAppenderlog4j.appender.flume.Hostname = spark01log4j.appender.flume.Port = 41414log4j.appender.flume.UnsafeMode = true
3.使用flume采集Log4j产生的日志
关键就是写出flume agent配置文件
cd $FLUME_HOME
cd conf
vim streaming.confagent1.sources =avro-sourceagent1.channels=logger-channelagent1.sinks=log-sink#define sourceagent1.sources.avro-source.type=avroagent1.sources.avro-source.bind=0.0.0.0agent1.sources.avro-source.port=41414#define channelagent1.channels.logger-channel.type=memory#define sinkagent1.sinks.log-sink.type=loggeragent1.sources.avro-source.channels=logger-channelagent1.sinks.log-sink.channel=logger-channel
保存好。启动配置文件
flume-ng agent \
--conf $FLUME_HOME/conf \
--conf-file $FLUME_HOME/conf/streaming.conf \
--name agent1 \
-Dflume.root.logger=INFO,console
4.使用kafkasink将flume收集到的数据输出到kafka
后台方式启动kafka
cd /opt/kafka_2.11
bin/kafka-server-start.sh -daemon config/server.properties
4.1创建一个topic
> bin/kafka-topics.sh --create --zookeeper spark01:2181 --replication-factor 1 --partitions 1 --topic streamingtopic
4.2.查看topic列表
> bin/kafka-topics.sh --list --zookeeper spark01:2181
4.3.消费消息
> bin/kafka-console-consumer.sh --zookeeper spark01:2181 --from-beginning --topic streamingtopic
4.4run LoggerGenerator.java
************** 查看topic列表 > bin/kafka-topics.sh --list --zookeeper spark01:2181 查看列表及具体信息 > bin/kafka-topics.sh --zookeeper spark01:2181 --describe 查看集群情况: >bin/kafka-topics.sh --describe --zookeeper spark01:2181,spark02:2181,spark03:2181 --topic streamingtopic >bin/kafka-topics.sh --describe --zookeeper spark01:2181,spark02:2181,spark03:2181 --topic streamingtopic 发现都能看到topic streamingtopic。 生产消息 > bin/kafka-console-producer.sh --broker-list spark01:9092 -topic streamingtopic 消费消息 > bin/kafka-console-consumer.sh --zookeeper spark01:2181 --from-beginning --topic streamingtopic//************
5.sparkstreaming消费kafka的数据进行统计
package com.yys.sparkimport org.apache.spark.SparkConfimport org.apache.spark.streaming.kafka.KafkaUtilsimport org.apache.spark.streaming.{Seconds, StreamingContext}/** * Spark Streaming对接Kafka */object KafkaStreamingApp { def main(args: Array[String]): Unit = { if(args.length != 4) { System.err.println("Usage: KafkaStreamingApp <zkQuorum> <group> <topics> <numThreads>") } val Array(zkQuorum, group, topics, numThreads) = args val sparkConf = new SparkConf().setAppName("KafkaReceiverWordCount") .setMaster("local[2]") val ssc = new StreamingContext(sparkConf, Seconds(5)) val topicMap = topics.split(",").map((_, numThreads.toInt)).toMap // TODO... Spark Streaming如何对接Kafka val messages = KafkaUtils.createStream(ssc, zkQuorum, group,topicMap)
// TODO... 自己去测试为什么要取第二个
//业务逻辑
messages.map(_._2).count().print() ssc.start() ssc.awaitTermination() }
}
在idea上配置 program arguments参数: spark01:2181 test streamingtopic 1
6.本地测试和生产环境的使用
本地进行测试,在IDEA中运行LoggerGenerator,然后使用flume,kafka以及spark streaming进行处理操作。
在生产上肯定不是这样干的:
1)打包jar,执行LoggerGenerator类
2)flume,kafka和本地的测试是一样的
3)spark streaming的代码也是需要打成jar包,然后使用spark-submit的方式进行提交到我们的环境上执行。
可以根据实际情况选择运行模式:local/yarn/standalone/mesos
在生产上,整个流处理的流程都是一样的,区别在于业务逻辑的复杂性
