Apriori算法、时序模式

xiaoxiao2021-02-28  40

一、实验目的与要求

掌握常见关联规则、时序摸式方法

二、实验任务

1.理解常用关联规则算法。

2.掌握Apriori算法。

3.了解时序模式,掌握时间序列的常用算法。

三、预习与准备

1. python基本语法。

2. 熟悉pycharm的开发环境。

四、实验内容

1.实现Apriori算法调用代码。

2.实现ARIMA模型代码。

3.实现离散点检测代码。

五、实验过程

1.实现Apriori算法调用代码:

#-*- coding: utf-8 -*-from __future__ import print_functionimport pandas as pdfrom Apriori import *inputfile='E://PycharmProjects/data/menu_orders.xls'outputfile='E://PycharmProjects/tmp/apriori_rules.xls'data=pd.read_excel(inputfile,header=None)

print(u'\n转换原始数据至0-1矩阵...')ct=lambda x:pd.Series(1,index=x[pd.notnull(x)])

b=map(ct,data.as_matrix())data=pd.DataFrame(list(b)).fillna(0)print(u'转换完毕。')del bsupport=0.2confidence=0.5ms='---'find_rule(data,support,confidence,ms).to_excel(outputfile)

Ariori.py

# -*- coding: utf-8 -*-from __future__ import print_functionimport pandas as pddef connect_string(x, ms):    x = list(map(lambda i: sorted(i.split(ms)), x))    l = len(x[0])    r = []    for i in range(len(x)):        for j in range(i, len(x)):            if x[i][:l - 1] == x[j][:l - 1] and x[i][l - 1] != x[j][l - 1]:                r.append(x[i][:l - 1] + sorted([x[j][l - 1], x[i][l - 1]]))    return rdef find_rule(d, support, confidence, ms=u'--'):    result = pd.DataFrame(index=['support', 'confidence'])  # 定义输出结果    support_series = 1.0 * d.sum() / len(d)  # 支持度序列    column = list(support_series[support_series > support].index)      k = 0    while len(column) > 1:        k = k + 1        print(u'\n正在进行第%s次搜索...' % k)        column = connect_string(column, ms)        print(u'数目:%s...' % len(column))        sf = lambda i: d[i].prod(axis=1, numeric_only=True)         d_2 = pd.DataFrame(list(map(sf, column)), index=[ms.join(i)

for i in column]).T        support_series_2 = 1.0 * d_2[[ms.join(i) for i in column]].sum() /len(d)          column = list(support_series_2[support_series_2 > support].index)         support_series = support_series.append(support_series_2)        column2 = []        for i in column:              i = i.split(ms)            for j in range(len(i)):                column2.append(i[:j] + i[j + 1:] + i[j:j + 1])        cofidence_series = pd.Series(index=[ms.join(i) for i in column2])        for i in column2:  # 计算置信度序列            cofidence_series[ms.join(i)] = support_series[ms.join(sorted(i))] / support_series[ms.join(i[:len(i) - 1])]        for i in cofidence_series[cofidence_series > confidence].index:             result[i] = 0.0

            result[i]['confidence'] = cofidence_series[i]

    result[i]['support'] = support_series[ms.join(sorted(i.split(ms)))]result = result.T.sort_values(['confidence', 'support'], ascending=False)  print(u'\n结果为:')print(result)

2. 实现ARIMA模型代码:

 

#-*- coding: utf-8 -*-import pandas as pddiscfile='E://PycharmProjects/data/arima_data.xls'forecastnum=5data=pd.read_excel(discfile,index_col=u'日期')import matplotlib.pyplot as pltplt.rcParams['font.sans-serif']=['SimHei']plt.rcParams['axes.unicode_minus']=Falsedata.plot()plt.show()from statsmodels.graphics.tsaplots import plot_acfplot_acf(data).show()from statsmodels.tsa.stattools import adfuller as ADFprint(u'原始序列的ADF检验结果为:',ADF(data[u'销量']))D_data=data.diff().dropna()D_data=data.columns=[u'销量']D_data.plot()plt.show()plot_acf(D_data).show()from statsmodels.graphics.tsaplots import plot_pacfplot_pacf(D_data).show()print(u'差分序列的ADF检验结果为:',ADF(D_data[u'销量']))from statsmodels.stats.diagnostic import acorr_ljungboxprint(u'差分序列的白噪声检验结果为:',acorr_ljungbox(D_data,lags=1))from statsmodels.tsa.arima_model import ARIMA

pmax=int(len(D_data)/10)qmax=int(len(D_data)/10)bic_matrix=[]

for p in range(pmax+1):    tmp=[]    for q in range(qmax+1):        try:            tmp.append(ARIMA(data,(p,1,q)).fit().bic)        except:            tmp.append(None)    bic_matrix.append(tmp)

3.实现离散点检测代码:

 

# -*- coding: utf-8 -*-import numpy as npimport pandas as pdif __name__ == '__main__':    inputfile = 'E://PycharmProjects/data/consumption_data.xls'    k = 3    threshold = 2    iteration = 500    data = pd.read_excel(inputfile, index_col='Id')    data_zs = 1.0 * (data - data.mean()) / data.std()    from sklearn.cluster import KMeans    model = KMeans(n_clusters=k, n_jobs=4, max_iter=iteration)    model.fit(data_zs)    r = pd.concat([data_zs, pd.Series(model.labels_, index=data.index)], axis=1)    r.columns = list(data.columns) + [u'聚类类别']    norm = []    for i in range(k):        norm_tmp = r[['R', 'F', 'M']][r[u'聚类类别'] == i] - model.cluster_centers_[i]        norm_tmp = norm_tmp.apply(np.linalg.norm, axis=1)        norm.append(norm_tmp / norm_tmp.median())    norm = pd.concat(norm)    import matplotlib.pyplot as plt    plt.rcParams['font.sans-serif'] = ['SimHei']    plt.rcParams['axes.unicode_minus'] = False    norm[norm <= threshold].plot(style='go')    discrete_points = norm[norm > threshold]    discrete_points.plot(style='ro')    for i in range(len(discrete_points)):        id = discrete_points.index[i]        n = discrete_points.iloc[i]        plt.annotate('(%s, %0.2f)' % (id, n), xy=(id, n), xytext=(id, n))    plt.xlabel(u'编号')    plt.ylabel(u'相对距离')    plt.show()

实验效果

1. 实现Apriori算法调用代码:

 

2. 实现ARIMA模型代码:

 

3.实现离散点检测代码:

 

 

六、实验总结与体会

通过这次的实验,我学会了Python中的挖掘建模的基本操作,通过pandas来读取Excel表格文件中的数据,通过outputfile来指定输出数据路径,然后通过data.to_excel(outputfile)输出结果,写入文件,通过matplotlib.pyplot来导入图像库,从而生成图像,更加直观的表达数据分析结果,通过这次的实验操作,让我对Python语言有了更深刻的认识,语言的简单明了,当时功能却很强大,在今后的学习当中,我一定要上课认真听老师讲解,仔细研读代码,分析代码,然后自己动手敲写代码,及时发现错误,自己尝试解决错误,实在无法解决的问题,要积极与老师和同学交流探讨,只有这样,我们才能更好的学习这门课程。

 

转载请注明原文地址: https://www.6miu.com/read-2619691.html

最新回复(0)