Zookeeper之概述

xiaoxiao2021-02-28  26

一、Zookeeper是什么

ZooKeeper 是一个开源的分布式协调服务,ZooKeeper框架最初是在“Yahoo!"上构建的,用于以简单而稳健的方式访问他们的应用程序。 后来,Apache ZooKeeper成为Hadoop,HBase和其他分布式框架使用的有组织服务的标准。 例如,Apache HBase使用ZooKeeper跟踪分布式数据的状态。ZooKeeper 的设计目标是将那些复杂且容易出错的分布式一致性服务封装起来,构成一个高效可靠的原语集,并以一系列简单易用的接口提供给用户使用。

ZooKeeper 是一个典型的分布式数据一致性解决方案,分布式应用程序可以基于 ZooKeeper 实现诸如数据发布/订阅、负载均衡、命名服务、分布式协调/通知、集群管理、Master 选举、分布式锁和分布式队列等功能。

Zookeeper 一个最常用的使用场景就是用于担任服务生产者和服务消费者的注册中心。 服务生产者将自己提供的服务注册到Zookeeper中心,服务的消费者在进行服务调用的时候先到Zookeeper中查找服务,获取到服务生产者的详细信息之后,再去调用服务生产者的内容与数据。如下图所示,在 Dubbo架构中 Zookeeper 就担任了注册中心这一角色。

二、各种概念

1) 数据模型

   与Linux文件系统不同的是,Linux文件系统有目录和文件的区别,而Zookeeper的数据节点称为ZNode,ZNode是Zookeeper中数据的最小单元,每个ZNode都可以保存数据,同时还可以挂载子节点,因此构成了一个层次化的命名空间,称为树。

   Zookeeper中ZNode的节点创建时候是可以指定类型的,主要有下面几种类型。

1.1.PERSISTENT:持久化ZNode节点,一旦创建这个ZNode点存储的数据不会主动消失,除非是客户端主动的delete。

1.2.EPHEMERAL:临时ZNode节点,Client连接到ZookeeperServer的时候会建立一个Session,之后用这个Zookeeper连接实例创建该类型的ZNode,一旦Client关闭了Zookeeper的连接,服务器就会清除Session,然后这个Session建立的ZNode节点都会从命名空间消失。总结就是,这个类型的ZNode的生命周期是和Client建立的连接一样的。

1.3.PERSISTENT_SEQUENTIAL:顺序自动编号的持久化ZNode节点,这种ZNode节点会根据当前已近存在的ZNode节点编号自动加 1,而且不会随Session断开而消失。

1.4.EPEMERAL_SEQUENTIAL:顺序自动编号的临时节点,ZNode节点编号会自动增加,但是会随Session消失而消失。

2) Watcher数据变更通知

   ZooKeeper中的Watch事件只能触发一次。也就是说,如果客户端在指定的ZNode设置了Watch,如果该ZNode数据发生变更,ZooKeeper会发送一个变更通知给客户端,同时触发设置的Watch事件。如果ZNode数据又发生了变更,客户端在收到第一次通知后没有重新设置该ZNode的Watch,则ZooKeeper就不会发送一个变更通知给客户端。

    ZooKeeper异步通知设置Watch的客户端。但是ZooKeeper能够保证在ZNode的变更生效之后才会异步地通知客户端,然后客户端才能够看到ZNode的数据变更。由于网络延迟,多个客户端可能会在不同的时间看到ZNode数据的变更,但是看到变更的顺序是能够保证有序一致的。

    ZNode可以设置两类Watch,一个是Data Watches(该ZNode的数据变更导致触发Watch事件),另一个是Child Watches(该ZNode的孩子节点发生变更导致触发Watch事件)。调用getData()和exists() 方法可以设置Data Watches,调用getChildren()方法可以设置Child Watches。调用setData()方法触发在该ZNode的注册的Data Watches。调用create()方法创建一个ZNode,将触发该ZNode的DataWatches;调用create()方法创建ZNode的孩子节点,则触发ZNode的Child Watches。调用delete()方法删除ZNode,则同时触发Data Watches和Child Watches,如果该被删除的ZNode还有父节点,则父节点触发一个Child Watches。

另外,如果客户端与ZooKeeper Server断开连接,客户端就无法触发Watches,除非再次与ZooKeeper Server建立连接。

    znode可以被监控,该目录下某些信息的修改,例如节点数据、子节点变化等,可以主动通知监控注册的client。事实上,通过这个特性,可以完成许多重要应用,例如配置管理、信息同步、分布式锁等等。

3) ACL

Zookeeper采用ACL(AccessControlLists)策略来进行权限控制,类似于 UNIX 文件系统的权限控制。Zookeeper 定义了如下5种权限。

其中尤其需要注意的是,CREATE和DELETE这两种权限都是针对子节点的权限控制。

4)角色

在 ZooKeeper 中没有选择传统的  Master/Slave 概念,而是引入了Leader、Follower 和 Observer 三种角色。如下图所示

 

ZooKeeper 集群中的所有机器通过一个 Leader 选举过程来选定一台称为 “Leader” 的机器,Leader 既可以为客户端提供写服务又能提供读服务。除了 Leader 外,Follower 和  Observer 都只能提供读服务。Follower 和  Observer 唯一的区别在于 Observer (就是没有选举权和被选举权的 Follower)机器不参与 Leader 的选举过程,也不参与写操作的“过半写成功”策略,因此 Observer 机器可以在不影响写性能的情况下提升集群的读性能。

三、工作原理

Zab协议

Paxos 算法应该可以说是 ZooKeeper 的灵魂了。但是,ZooKeeper 并没有完全采用 Paxos算法 ,而是使用 ZAB 协议作为其保证数据一致性的核心算法。另外,在ZooKeeper的官方文档中也指出,ZAB协议并不像 Paxos 算法那样,是一种通用的分布式一致性算法,它是一种特别为Zookeeper设计的崩溃可恢复的原子消息广播算法。

   Zab(ZooKeeper Atomic Broadcast)原子消息广播协议作为数据一致性的核心算法,Zab协议是专为Zookeeper设计的支持崩溃恢复原子消息广播算法。

   Zab协议包括两种基本的模式:崩溃恢复和消息广播。

崩溃恢复模式

说到崩溃恢复我们首先要提到 ZAB 中的 Leader 选举算法,当系统出现崩溃影响最大应该是 Leader 的崩溃,因为我们只有一个 Leader ,所以当 Leader 出现问题的时候我们势必需要重新选举 Leader 。

Leader 选举可以分为两个不同的阶段,第一个是我们提到的 Leader 宕机需要重新选举,第二则是当 Zookeeper 启动时需要进行系统的 Leader 初始化选举。下面我先来介绍一下 ZAB 是如何进行初始化选举的。

假设我们集群中有3台机器,那也就意味着我们需要两台以上同意(超过半数)。比如这个时候我们启动了 server1 ,它会首先 投票给自己 ,投票内容为服务器的 myid 和 ZXID ,因为初始化所以 ZXID 都为0,此时 server1 发出的投票为 (1,0)。但此时 server1 的投票仅为1,所以不能作为 Leader ,此时还在选举阶段所以整个集群处于 Looking 状态。

接着 server2 启动了,它首先也会将投票选给自己(2,0),并将投票信息广播出去(server1也会,只是它那时没有其他的服务器了),server1 在收到 server2 的投票信息后会将投票信息与自己的作比较。首先它会比较 ZXID ,ZXID 大的优先为 Leader,如果相同则比较 myid,myid 大的优先作为 Leader。所以此时server1 发现 server2 更适合做 Leader,它就会将自己的投票信息更改为(2,0)然后再广播出去,之后server2 收到之后发现和自己的一样无需做更改,并且自己的 投票已经超过半数 ,则 确定 server2 为 Leader,server1 也会将自己服务器设置为 Following 变为 Follower。整个服务器就从 Looking 变为了正常状态。

当 server3 启动发现集群没有处于 Looking 状态时,它会直接以 Follower 的身份加入集群。

还是前面三个 server 的例子,如果在整个集群运行的过程中 server2 挂了,那么整个集群会如何重新选举 Leader 呢?其实和初始化选举差不多。

首先毫无疑问的是剩下的两个 Follower 会将自己的状态 从 Following 变为 Looking 状态 ,然后每个 server 会向初始化投票一样首先给自己投票(这不过这里的 zxid 可能不是0了,这里为了方便随便取个数字)。

假设 server1 给自己投票为(1,99),然后广播给其他 server,server3 首先也会给自己投票(3,95),然后也广播给其他 server。server1 和 server3 此时会收到彼此的投票信息,和一开始选举一样,他们也会比较自己的投票和收到的投票(zxid 大的优先,如果相同那么就 myid 大的优先)。这个时候 server1 收到了 server3 的投票发现没自己的合适故不变,server3 收到 server1 的投票结果后发现比自己的合适于是更改投票为(1,99)然后广播出去,最后 server1 收到了发现自己的投票已经超过半数就把自己设为 Leader,server3 也随之变为 Follower。

请注意 ZooKeeper 为什么要设置奇数个结点?比如这里我们是三个,挂了一个我们还能正常工作,挂了两个我们就不能正常工作了(已经没有超过半数的节点数了,所以无法进行投票等操作了)。而假设我们现在有四个,挂了一个也能工作,但是挂了两个也不能正常工作了,这是和三个一样的,而三个比四个还少一个,带来的效益是一样的,所以 Zookeeper 推荐奇数个 server 。

那么说完了 ZAB 中的 Leader 选举方式之后我们再来了解一下 崩溃恢复 是什么玩意?

其实主要就是 当集群中有机器挂了,我们整个集群如何保证数据一致性?

如果只是 Follower 挂了,而且挂的没超过半数的时候,因为我们一开始讲了在 Leader 中会维护队列,所以不用担心后面的数据没接收到导致数据不一致性。

如果 Leader 挂了那就麻烦了,我们肯定需要先暂停服务变为 Looking 状态然后进行 Leader 的重新选举(上面我讲过了),但这个就要分为两种情况了,分别是 确保已经被Leader提交的提案最终能够被所有的Follower提交 和 跳过那些已经被丢弃的提案 。

确保已经被Leader提交的提案最终能够被所有的Follower提交是什么意思呢?

假设 Leader (server2) 发送 commit 请求(忘了请看上面的消息广播模式),他发送给了 server3,然后要发给 server1 的时候突然挂了。这个时候重新选举的时候我们如果把 server1 作为 Leader 的话,那么肯定会产生数据不一致性,因为 server3 肯定会提交刚刚 server2 发送的 commit 请求的提案,而 server1 根本没收到所以会丢弃。

那怎么解决呢?

聪明的同学肯定会质疑,这个时候 server1 已经不可能成为 Leader 了,因为 server1 和 server3 进行投票选举的时候会比较 ZXID ,而此时 server3 的 ZXID 肯定比 server1 的大了。(不理解可以看前面的选举算法)

那么跳过那些已经被丢弃的提案又是什么意思呢?

假设 Leader (server2) 此时同意了提案N1,自身提交了这个事务并且要发送给所有 Follower 要 commit 的请求,却在这个时候挂了,此时肯定要重新进行 Leader 的选举,比如说此时选 server1 为 Leader (这无所谓)。但是过了一会,这个 挂掉的 Leader 又重新恢复了 ,此时它肯定会作为 Follower 的身份进入集群中,需要注意的是刚刚 server2 已经同意提交了提案N1,但其他 server 并没有收到它的 commit 信息,所以其他 server 不可能再提交这个提案N1了,这样就会出现数据不一致性问题了,所以 该提案N1最终需要被抛弃掉 。

消息广播模式

说白了就是 ZAB 协议是如何处理写请求的,上面我们不是说只有 Leader 能处理写请求嘛?那么我们的 Follower 和 Observer 是不是也需要 同步更新数据 呢?总不能数据只在 Leader 中更新了,其他角色都没有得到更新吧?

不就是 在整个集群中保持数据的一致性 嘛?如果是你,你会怎么做呢?

废话,第一步肯定需要 Leader 将写请求 广播 出去呀,让 Leader 问问 Followers 是否同意更新,如果超过半数以上的同意那么就进行 Follower 和 Observer 的更新(和 Paxos 一样)。当然这么说有点虚,画张图理解一下。

嗯。。。看起来很简单,貌似懂了🤥🤥🤥。这两个 Queue 哪冒出来的?答案是 ZAB 需要让 Follower 和 Observer 保证顺序性 。何为顺序性,比如我现在有一个写请求A,此时 Leader 将请求A广播出去,因为只需要半数同意就行,所以可能这个时候有一个 Follower F1因为网络原因没有收到,而 Leader 又广播了一个请求B,因为网络原因,F1竟然先收到了请求B然后才收到了请求A,这个时候请求处理的顺序不同就会导致数据的不同,从而 产生数据不一致问题 。

所以在 Leader 这端,它为每个其他的 zkServer 准备了一个 队列 ,采用先进先出的方式发送消息。由于协议是 通过 TCP 来进行网络通信的,保证了消息的发送顺序性,接受顺序性也得到了保证。

除此之外,在 ZAB 中还定义了一个 全局单调递增的事务ID ZXID ,它是一个64位long型,其中高32位表示 epoch 年代,低32位表示事务id。epoch 是会根据 Leader 的变化而变化的,当一个 Leader 挂了,新的 Leader 上位的时候,年代(epoch)就变了。而低32位可以简单理解为递增的事务id。

定义这个的原因也是为了顺序性,每个 proposal 在 Leader 中生成后需要 通过其 ZXID 来进行排序 ,才能得到处理。

四、典型应用场景

1)数据发布/订阅(配置中心)

 分布式环境下,配置文件同步非常常见

一般要求一个集群中,所有节点的配置信息是一致的,比如kafka集群

对配置文件修改后,希望能够快速同步到各个节点上

 配置管理可以交由zookeeper实现

可将配信息写入zookeeper上的一个znode

各个客户端服务器监听这个znode

一旦znode中的数据被修改,zookeeper将通知各个客户端服务器

2)负载均衡

    这里说的负载均衡是指软负载均衡。在分布式环境中,为了保证高可用性,通常同一个应用或同一个服务的提供方都会部署多份,达到对等服务。而消费者就须要在这些对等的服务器中选择一个来执行相关的业务逻辑,其中比较典型的是消息中间件中的生产者,消费者负载均衡。

    消息中间件中发布者和订阅者的负载均衡,linkedin 开源的 KafkaMQ 和阿里开源的 rocketMq 都是通过 zookeeper 来做到生产者、消费者的负载均衡。这里以rocketMq为例:

①   生产者负载均衡

    rocketMq发送消息的时候,生产者在发送消息的时候必须选择一台broker上的一个分区来发送消息,因此rocketMq在运行过程中,会把所有broker和对应的分区信息全部注册到 ZK 指定节点上,默认的策略是一个依次轮询的过程,生产者在通过 ZK 获取分区列表之后,会按照 brokerId 和partition 的顺序排列组织成一个有序的分区列表,发送的时候按照从头到尾循环往复的方式选择一个分区来发送消息。

②   消费负载均衡

    在消费过程中,一个消费者会消费一个或多个分区中的消息,但是一个分区只会由一个消费者来消费。rocketMq的消费策略是:

a)   每个分区针对同一个 group 只挂载一个消费者。

b)   如果同一个 group 的消费者数目大于分区数目,则多出来的消费者将不参不消费。

c)   如果同一个 group 的消费者数目小于分区数目,则有部分消费者需要额外承担消费任务。

    在某个消费者故障或者重启等情况下,其他消费者会感知到这一变化(通过 zookeeper watch 消费者列表),然后重新进行负载均衡,保证所有的分区都有消费者进行消费。

3)命名服务

    命名服务也是分布式系统中比较常见的一类场景。在分布式系统中,通过使用命名服务,客户端应用能够根据制定名字来获取资源或服务的地址,提供者等信息。被命名的实体通常可以是集群中的机器,提供的服务地址,进程对象等等——这些我们都可以统称他们为名字(Name)。其中较为常见的就是一些分布式服务框架中的服务地址列表。通过调用 ZK 提供的创建节点的 API,能够很容易创建一个全局唯一的 path,这个 path 就可以作为一个名称。

    阿里开源的分布式服务框架 Dubbo 中使用 ZooKeeper 来作为其命名服务,维护全局的服务地址列表,在Dubbo 的实现中:

a)   服务提供者在启动的时候,向 ZK 上指定节点/dubbo/${serviceName}/providers 目录下写入自己的 URL 地址,这个操作就完成了服务的发布。

b)   服务消费者启动的时候,订阅/dubbo/${serviceName}/providers 目录下的提供者 URL 地址,并向/dubbo/${serviceName} /consumers目录下写入自己的 URL 地址。

    注意,所有向 ZK 上注册的地址都是临时节点,这样就能够保证服务提供者和消费者能够自动感应资源的变化。

    另外,Dubbo 还有针对服务粒度的监控,方法是订阅/dubbo/${serviceName}目录下所有提供者和消费者的信息。

4)分布式协调/通知

ZooKeeper 中特有 watcher 注册和异步通知机制,能够很好的实现分布式环境下不同系统之间的通知和协调,实现对数据变更的实时处理。使用方法通常是不同系统都对 ZK 上同一个 znode 进行注册,监听 znode 的变化(包括 znode 本身内容及子节点的),其中一个系统 update 了 znode,那么另一个系统能够收到通知,并作出相应处理。

另一种心跳检测机制:检测系统和被检测系统之间并不直接关联起来,而是通过 zk 上某个节点关联,大大减少系统耦合。另一种系统调度模式:某系统有控制台和推送系统两部分组成,控制台的职责是控制推送系统进行相应的推送工作。管理人员在控制台作的一些操作,实际上是修改了 ZK 上某些节点的状态,而 ZK 就把这些变化通知给他们注册 Watcher 的客户端,即推送系统,于是,作出相应的推送任务。另一种工作汇报模式:一些类似于任务分发系统,子任务启动后,到 zk 来注册一个临时节点,并且定时将自己的迚度进行汇报(将进度写回这个临时节点),这样任务管理者就能够实时知道任务进度。

     总之,使用 zookeeper 来进行分布式通知和协调能够大大降低系统之间的耦合。

5)集群管理与 Master 选举

·集群机器监控:这通常用于那种对集群中机器状态,机器在线率有较高要求的场景,能够快速对集群中机器变化作出响应。这样的场景中,往往有一个监控系统,实时检测集群机器是否存活。过去的做法通常是:监控系统通过某种手段(比如 ping)定时检测每个机器,或者每个机器自己定时向监控系统汇报“我还活着”。 这种做法可行,但是存在两个比较明显的问题:

a)   集群中机器有变动的时候,牵连修改的东西比较多。

b)   有一定的延时。

    利用 ZooKeeper 有两个特性,就可以实时另一种集群机器存活性监控系统:

· 客户端在节点 x 上注册一个 Watcher,那么如果 x 的子节点变化了,会通知该客户端。

· 创建 EPHEMERAL 类型的节点,一旦客户端和服务器的会话结束戒过期,那么该节点就会消失。

    例如,监控系统在 /clusterServers 节点上注册一个 Watcher,以后每动态加机器,那么就往 /clusterServers 下创建一个 EPHEMERAL 类型的节点:/clusterServers/{hostname},这样,监控系统就能够实时知道机器的增减情况,至于后续处理就是监控系统的业务了。

    Master 选举则是 zookeeper 中最为经典的应用场景了。在分布式环境中,相同的业务应用分布在不同的机器上,有些业务逻辑(例如一些耗时的计算,网络 I/O 处理),往往只需要让整个集群中的某一台机器进行执行,其余机器可以共享这个结果,这样可以大大减少重复劳动,提高性能,于是这个 master 选举便是这种场景下的碰到的主要问题。

    利用 ZooKeeper 的强一致性,能够保证在分布式高并发情况下节点创建的全局唯一性,即:同时有多个客户端请求创建 /currentMaster 节点,最终一定只有一个客户端请求能够创建成功。利用这个特性,就能很轻易的在分布式环境中迚行集群选取了。另外,这种场景演化一下,就是动态 Master 选举。这就要用到 EPHEMERAL_SEQUENTIAL 类型节点的特性了。

    上文中提到,所有客户端创建请求,最终只有一个能够创建成功。在这里稍微变化下,就是允许所有请求都能够创建成功,但是得有个创建顺序,于是所有的请求最终在 ZK 上创建结果的一种可能情况是这样:

/currentMaster/{sessionId}-1, /currentMaster/{sessionId}-2 , /currentMaster/{sessionId}-3 ….. 每次选取序列号最小的那个机器作为Master,如果这个机器挂了,由于他创建的节点会马上消失,那么之后最小的那个机器就是 Master 了。

   在搜索系统中,如果集群中每个机器都生成一份全量索引,不仅耗时,而且不能保证彼此之间索引数据一致。因此让集群中的 Master 来进行全量索引的生成,然后同步到集群中其它机器。另外,Master 选举的容灾措施是,可以随时迚行手动指定 master,就是说应用在 zk 在无法获取 master 信息时,可以通过比如 http 方式,向一个地方获取 master。

   在Hbase 中,也是使用 ZooKeeper 来实现动态HMaster 的选举。在 Hbase 实现中,会在 ZK 上存储一些 ROOT 表的地址和 HMaster 的地址,HRegionServer 也会把自己以临时节点(Ephemeral)的方式注册到 Zookeeper 中,使得 HMaster 可以随时感知到各个 HRegionServer的存活状态,同时,一旦 HMaster 出现问题,会重新选举出一个 HMaster 来运行,从而避免了 HMaster 的单点问题。

6)分布式锁

分布式锁,这个主要得益于 ZooKeeper 为我们保证了数据的强一致性。锁服务可以分为两类,一个是保持独占,另一个是控制时序。

· 所谓保持独占,就是所有试图来获取这个锁的客户端,最终只有一个可以成功获得这把锁。通常的做法是把 zk 上的一个 znode 看作是一把锁,通过 create znode 的方式来实现。所有客户端都去创建/distribute_lock 节点,最终成功创建的那个客户端也即拥有了这把锁。

·  控制时序,就是所有试图来获取这个锁的客户端,最终都是会被安排执行,只是有个全局时序了。做法和上面基本类似,只是这里

/distribute_lock已经预先存在,客户端在它下面创建临时有序节点(这个可以通过节点的属性控制 :

CreateMode.EPHEMERAL_SEQUENTIAL来指定)。Zk 的父节点(/distribute_lock)维持一份 sequence,保证子节点创建的时序性,从而也形成了每个客户端的全局时序。

7)分布式队列

    队列方面,简单地讲有两种,一种是常规的先进先出队列,另一种是要等到队列成员聚齐之后的才统一按序执行。对于第一种先进先出队列,和分布式锁服务中的控制时序场景基本原理一致,这里不再赘述。

    第二种队列其实是在 FIFO 队列的基础上作了一个增强。通常可以在 /queue 这个 ZNode 下预先建立一个/queue/num 节点,并且赋值为 n(或者直接给/queue 赋值 n),表示队列大小,之后每次有队列成员加入后,就判断下是否已经到达队列大小,决定是否可以开始执行了。这种用法的典型场景是,分布式环境中,一个大任务 Task A,需要在很多子任务完成(或条件就绪)情况下才能进行。这个时候,凡是其中一个子任务完成(就绪),那么就去 /taskList 下建立自己的临时时序节点(CreateMode.EPHEMERAL_SEQUENTIAL),当 /taskList 发现自己下面的子节点满足指定个数,就可以进行下一步按序进行处理了。

转载请注明原文地址: https://www.6miu.com/read-2619661.html

最新回复(0)