poj-2955 Brackets
Description
We give the following inductive definition of a “regular brackets” sequence:
the empty sequence is a regular brackets sequence,if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, andif a and b are regular brackets sequences, then ab is a regular brackets sequence.no other sequence is a regular brackets sequenceFor instance, all of the following character sequences are regular brackets sequences:
(), [], (()), ()[], ()[()]
while the following character sequences are not:
(, ], )(, ([)], ([(]
Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.
Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].
Input
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (, ), [, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.
Output
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.
Sample Input
((())) ()()() ([]]) )[)( ([][][) endSample Output
6 6 4 0 6Source
Stanford Local 2004给出一串由'(' ')' '[' ']'组成的字符串,定义完全匹配的意义。即子串所有的单个字符均能在该子串中找到对应的匹配位置。例:((()))。中间可以穿插,但是要求能对应匹配,例:()()()。求一个串的最长匹配子串。例:)()(,其值为2,只有子串()匹配。现在给出一个字符串,输出最长的匹配子串长度。输入"end"结束。
这个题是区间dp的入门题。个人对于区间dp的理解,精髓在于如何合并区间。更为经典的堆石子问题就能体现这个操作。这个题也完全利用了分区间的思想,状态上我们定义dp[i][j]表示第i个字符到第j个字符的子串,值就是最大的匹配值。那么定义一个k,将字符串分为2个区间,2个区间分别的值加起来就是可能的最大值。所有的k的最大值就是最终答案。也就是说,我们可以得到O(n^3)的算法,枚举i、j获得区间,枚举i < k < j来分区间。
如果开头与结尾2个字符恰好能匹配,那么dp[i][j] = dp[i+1][j-1]+2是错误的。例如:()()()。)()(的值是2,而()()()的值是6,因为这样忽略了原来不匹配的部分有可能跟两端的字符匹配。所以仍然需要划分区间求解。