HDU1003(最大子序列和)

xiaoxiao2021-02-28  121

Max Sum

Problem Description Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.   Input The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).   Output For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.   Sample Input 2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5   Sample Output Case 1: 14 1 4 Case 2: 7 1 6 #include <stdio.h> int main() { int t,j; scanf("%d",&t); for(j=1;j<=t;j++) { int n,i; int sum=0,max=-2000,start=1,temp=1,end; scanf("%d",&n); int a[n+1]; for(i=1;i<=n;i++) { scanf("%d",&a[i]); sum+=a[i]; if(max<=sum) { start=temp; max=sum; end=i; } if(sum<0) { sum=0; temp=i+1; } } printf("Case %d:\n%d %d %d\n",j,max,start,end); if(j!=t) printf("\n"); } }
转载请注明原文地址: https://www.6miu.com/read-25942.html

最新回复(0)