Spark-Streaming 使用flume的push方式进行流式处理

xiaoxiao2021-02-28  77

import org.apache.spark.SparkConf import org.apache.spark.streaming.flume.FlumeUtils import org.apache.spark.streaming.{Seconds, StreamingContext} /** * Created by ZX on 2015/6/22. */ object FlumePushWordCount { def main(args: Array[String]) { val host = args(0) val port = args(1).toInt LoggerLevels.setStreamingLogLevels() val conf = new SparkConf().setAppName("FlumeWordCount")//.setMaster("local[2]") val ssc = new StreamingContext(conf, Seconds(5)) //推送方式: flume向spark发送数据 val flumeStream = FlumeUtils.createStream(ssc, host, port) //flume中的数据通过event.getBody()才能拿到真正的内容 val words = flumeStream.flatMap(x => new String(x.event.getBody().array()).split(" ")).map((_, 1)) val results = words.reduceByKey(_ + _) results.print() ssc.start() ssc.awaitTermination() } }

<dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming-flume_2.10</artifactId> <version>${spark.version}</version> </dependency>

缺点: 只有一个端口接收数据

转载请注明原文地址: https://www.6miu.com/read-25043.html

最新回复(0)