TensorFlow学习笔记(十五)TensorFLow 用mnist数据做CNN

xiaoxiao2021-02-28  120

""" #Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly. """ import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # number 1 to 10 data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) def compute_accuracy(v_xs, v_ys):     global prediction     y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1})     correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))     accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))     result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1})     return result def weight_variable(shape):     initial = tf.truncated_normal(shape, stddev=0.1)     return tf.Variable(initial) def bias_variable(shape):     initial = tf.constant(0.1, shape=shape)     return tf.Variable(initial) def conv2d(x, W):     # stride [1, x_movement, y_movement, 1]     # Must have strides[0] = strides[3] = 1     return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x):     # stride [1, x_movement, y_movement, 1]     return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME') # define placeholder for inputs to network xs = tf.placeholder(tf.float32, [None, 784]) # 28x28 ys = tf.placeholder(tf.float32, [None, 10]) keep_prob = tf.placeholder(tf.float32) x_image = tf.reshape(xs, [-1, 28, 28, 1]) # print(x_image.shape)  # [n_samples, 28,28,1] ## conv1 layer ## W_conv1 = weight_variable([5,5, 1,32]) # patch 5x5, in size 1, out size 32 b_conv1 = bias_variable([32]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 28x28x32 h_pool1 = max_pool_2x2(h_conv1)                                         # output size 14x14x32 ## conv2 layer ## W_conv2 = weight_variable([5,5, 32, 64]) # patch 5x5, in size 32, out size 64 b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 14x14x64 h_pool2 = max_pool_2x2(h_conv2)                                         # output size 7x7x64 ## func1 layer ## W_fc1 = weight_variable([7*7*64, 1024]) b_fc1 = bias_variable([1024]) # [n_samples, 7, 7, 64] ->> [n_samples, 7*7*64] h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) ## func2 layer ## W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) # the error between prediction and real data cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),                                               reduction_indices=[1]))       # loss train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) sess = tf.Session() # important step sess.run(tf.global_variables_initializer()) for i in range(1000):     batch_xs, batch_ys = mnist.train.next_batch(100)     sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5})     if i % 50 == 0:         print(compute_accuracy(             mnist.test.images, mnist.test.labels))
转载请注明原文地址: https://www.6miu.com/read-21548.html

最新回复(0)