opencvC++学习2矩阵的掩膜操作
获取图像像素指针
Mat.ptr(int i=0) 获取像素矩阵的指针,索引i表示第几行,从0开始计行数。 获得当前行指针const uchar* current= myImage.ptr(row );
获取当前像素点P(row, col)的像素值 p(row, col) =current[col]
像素范围处理saturate_cast
saturate_cast(-100),返回 0。 saturate_cast(288),返回255 saturate_cast(100),返回100
这个函数的功能是确保RGB值得范围在0~255之间
掩膜操作实现图像对比度调整
红色是中心像素,从上到下,从左到右对每个像素做同样的处理操作,
得到最终结果就是对比度提高之后的输出图像Mat对象
代码:
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;
Mat src, dst, dst2;
char INPUT_WIN[] =
"input_image";
char OUTPUT_WIN[] =
"output_image";
int main(
int argc,
char *argv[])
{
src = imread(
"D:/opencvSRC/test.jpg");
if( !src.data ){
cout <<
"imread errot" << endl;
return -
1;
}
namedWindow(INPUT_WIN, WINDOW_AUTOSIZE);
imshow(INPUT_WIN, src);
int cols = (src.cols -
1) * src.channels();
int rows = src.rows;
int offset = src.channels();
dst = Mat::zeros(src.rows, src.cols, src.type());
for(
int row =
1; row < rows -
1; row++){
const uchar *previous = src.ptr<uchar>(row -
1);
const uchar *current = src.ptr<uchar>(row);
const uchar *next = src.ptr<uchar>(row +
1);
uchar *output = dst.ptr<uchar>(row);
for(
int col = offset; col < cols -
1; col++){
output[col] = saturate_cast<uchar>(
5 * current[col] - (previous[col] + current[col - offset] + current[col + offset] + next[col]));
}
}
namedWindow(OUTPUT_WIN, WINDOW_AUTOSIZE);
imshow(OUTPUT_WIN, dst);
double time = getTickCount();
dst2 = Mat::zeros(src.rows, src.cols, src.type());
Mat kernel = (Mat_<
char>(
3,
3) <<
0, -
1,
0, -
1,
5, -
1,
0, -
1,
0);
filter2D(src, dst2, src.depth(), kernel);
cout << (getTickCount() - time)/getTickFrequency() << endl;
namedWindow(
"OUTPUT_WIN2", WINDOW_AUTOSIZE);
imshow(
"OUTPUT_WIN2", dst2);
waitKey(
0);
return 0;
}
效果