keras入门 利用卷积神经网络进行手写数字识别

xiaoxiao2021-02-28  9

# -*- coding: utf-8 -*- """ Created on Tue Nov 21 16:22:40 2017 @author: www """ #利用卷积神经网络进行手写数字识别 from keras.models import Sequential from keras.layers import Dense,Dropout,Flatten from keras.layers.convolutional import Conv2D,MaxPooling2D from keras.datasets import mnist import numpy as np def load_data(): (X_train,y_train),(X_test,y_test) = mnist.load_data() return X_train,y_train,X_test,y_test #print(X_train[0].shape) #print(y_train[0]) def preprocessing(data_x): #把训练集中数据变为标准的思维张量形式,并把像素变成浮点型 #归一化 #返回值:DatraFrame data_x = data_x.reshape(data_x.shape[0],28,28,1).astype('float32') data_x /= 255 return data_x def train_y(y): #说明:哑编码 #参数: y_one = np.zeros(10) y_one[y] = 1 return y_one def model(X_train, y_train_one, X_test,y_test_one): model = Sequential() model.add(Conv2D(64, kernel_size=(3, 3), strides=(1, 1), padding='same', input_shape=(28,28,1), activation='relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.5)) model.add(Conv2D(128, kernel_size=(3,3), strides=(1,1), padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.5)) model.add(Conv2D(256, kernel_size=(3,3), strides=(1,1), padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.5)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(64, activation='relu')) model.add(Dense(32, activation='relu')) model.add(Dense(10, activation='softmax')) model.compile(loss = 'categorical_crossentropy', optimizer='adagrad', metrics=['accuracy']) model.fit(X_train,y_train_one, validation_data=(X_test,y_test_one), epochs = 20,batch_size = 128) scores = model.evaluate(X_test, y_test_one, verbose=0) return scores def main(): X_train,y_train,X_test,y_test = load_data() X_train = preprocessing(X_train) X_test = preprocessing(X_test) y_train_one = np.array([train_y(y_train[i]) for i in range(len(y_train))]) y_test_one = np.array([train_y(y_test[i] ) for i in range(len(y_test))]) scores = model(X_train, y_train_one, X_test,y_test_one) print(scores) main()

注:以上由于机器原因,代码没有跑完。所以我也不清楚准确率。。。

转载请注明原文地址: https://www.6miu.com/read-2100157.html

最新回复(0)