from numpy
import *
def trainNB0(trainMatrix,trainCatergory):
numTrainDoc = len(trainMatrix)
numWords = len(trainMatrix[
0])
pAbusive = sum(trainCatergory)/float(numTrainDoc)
p0Num = ones(numWords)
p1Num = ones(numWords)
p0Denom =
2.0
p1Denom =
2.0
for i
in range(numTrainDoc):
if trainCatergory[i] ==
1:
p1Num +=trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num +=trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p1Vect = log(p1Num/p1Denom)
p0Vect = log(p0Num/p0Denom)
return p0Vect,p1Vect,pAbusive
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
p1 = sum(vec2Classify * p1Vec) + log(pClass1)
p0 = sum(vec2Classify * p0Vec) + log(
1.0 - pClass1)
if p1 > p0:
return 1
else:
return 0
def loadDataSet():
postingList=[[
'my',
'dog',
'has',
'flea',
'problems',
'help',
'please'],
[
'maybe',
'not',
'take',
'him',
'to',
'dog',
'park',
'stupid'],
[
'my',
'dalmation',
'is',
'so',
'cute',
'I',
'love',
'him'],
[
'stop',
'posting',
'stupid',
'worthless',
'garbage'],
[
'mr',
'licks',
'ate',
'my',
'steak',
'how',
'to',
'stop',
'him'],
[
'quit',
'buying',
'worthless',
'dog',
'food',
'stupid']]
classVec = [
0,
1,
0,
1,
0,
1]
return postingList,classVec
def createVocabList(dataSet):
vocabSet = set([])
for document
in dataSet:
vocabSet = vocabSet | set(document)
return list(vocabSet)
def setOfWords2Vec(vocabList, inputSet):
returnVec = [
0]*len(vocabList)
for word
in inputSet:
if word
in vocabList:
returnVec[vocabList.index(word)] =
1
else:
print (
"the word: %s is not in my Vocabulary!" % word)
return returnVec
def testingNB():
listOPosts,listClasses = loadDataSet()
myVocabList = createVocabList(listOPosts)
trainMat=[]
for postinDoc
in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))
testEntry = [
'love',
'my',
'dalmation']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print (testEntry,
'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb))
testEntry = [
'stupid',
'garbage']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print (testEntry,
'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb))
def bagOfWords2VecMN(vocabList, inputSet):
returnVec = [
0]*len(vocabList)
for word
in inputSet:
if word
in vocabList:
returnVec[vocabList.index(word)] +=
1
return returnVec
def textParse(bigString):
import re
listOfTokens = re.split(
r'\W*', bigString)
return [tok.lower()
for tok
in listOfTokens
if len(tok) >
2]
if __name__ ==
"__main__":
listOPosts,listClasses = loadDataSet()
myVocabList = createVocabList(listOPosts)
trainMat = []
for postinDoc
in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
p0V,p1V,pAb = trainNB0(trainMat, listClasses)
testingNB()