【跟着stackoverflow学Pandas】How to iterate over rows in a DataFrame in Pandas-DataFrame按行迭代

xiaoxiao2021-02-28  61

最近做一个系列博客,跟着stackoverflow学Pandas。

专栏地址:http://blog.csdn.net/column/details/16726.html

以 pandas作为关键词,在stackoverflow中进行搜索,随后安照 votes 数目进行排序: https://stackoverflow.com/questions/tagged/pandas?sort=votes&pageSize=15

How to iterate over rows in a DataFrame in Pandas-DataFrame按行迭代

https://stackoverflow.com/questions/16476924/how-to-iterate-over-rows-in-a-dataframe-in-pandas

http://stackoverflow.com/questions/7837722/what-is-the-most-efficient-way-to-loop-through-dataframes-with-pandas

在对DataFrame进行操作时,我们不可避免的需要逐行查看或操作数据,那么有什么高效、快捷的方法呢?

index序号索引

import pandas as pd inp = [{'c1':10, 'c2':100}, {'c1':11,'c2':110}, {'c1':12,'c2':120}] df = pd.DataFrame(inp) for x in xrange(len(df.index)): print df['c1'].iloc[x]

这似乎是最常规的办法,而且可以在迭代的过程中对DataFrame进行操作。

enumerate

for i, row in enumerate(df.values): index= df.index[i] print row

df.values 是 numpy.ndarray 类型 这里 i 是index的序号, row是numpy.ndarray类型。

iterrows

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.iterrows.html

import pandas as pd inp = [{'c1':10, 'c2':100}, {'c1':11,'c2':110}, {'c1':12,'c2':120}] df = pd.DataFrame(inp) for index, row in df.iterrows(): print row['c1'], row['c2'] #10 100 #11 110 #12 120

df.iterrows() 的每次迭代都是一个tuple类型,包含了index和每行的数据。

采用iterrows的方法,得到的 row 是一个Series,DataFrame的dtypes不会被保留。返回的Series只是一个原始DataFrame的复制,不可以对原始DataFrame进行修改;

itertuples

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.itertuples.html

import pandas as pd inp = [{'c1':10, 'c2':100}, {'c1':11,'c2':110}, {'c1':12,'c2':120}] df = pd.DataFrame(inp) for row in df.itertuples(): # print row[0], row[1], row[2] 等同于 print row.Index, row.c1, row.c2

itertuples 返回的是一个 pandas.core.frame.Pandas 类型。

普遍认为itertuples 比 iterrows的速度要快。

zip / itertools.izip

zip 和 itertools.izip的用法是相似的, 但是zip返回一个list,而izip返回一个迭代器。 如果数据量很大,zip的性能不及izip

from itertools import izip import pandas as pd inp = [{'c1':10, 'c2':100}, {'c1':11,'c2':110}, {'c1':12,'c2':120}] df = pd.DataFrame(inp) for row in izip(df.index, df['c1'], df['c2']): print row

时间测评

import time from numpy.random import randn df = pd.DataFrame({'a': randn(100000), 'b': randn(100000)}) time_stat = [] # range(index) test_list = [] t = time.time() for r in xrange(len(df)): test_list.append((df.index[r], df.iloc[r,0], df.iloc[r,1])) time_stat.append(time.time()-t) # enumerate test_list = [] t = time.time() for i, r in enumerate(df.values): test_list.append((df.index[i], r[0], r[1])) time_stat.append(time.time()-t) # iterrows test_list = [] t = time.time() for i,r in df.iterrows(): test_list.append((df.index[i], r['a'], r['b'])) time_stat.append(time.time()-t) #itertuples test_list = [] t = time.time() for ir in df.itertuples(): test_list.append((ir[0], ir[1], ir[2])) time_stat.append(time.time()-t) # zip test_list = [] t = time.time() for r in zip(df.index, df['a'], df['b']): test_list.append((r[0], r[1], r[2])) time_stat.append(time.time()-t) # izip test_list = [] t = time.time() from itertools import izip for r in izip(df.index, df['a'], df['b']): test_list.append((r[0], r[1], r[2])) time_stat.append(time.time()-t) time_df = pd.DataFrame({'items':['range(index)', 'enumerate', 'iterrows', 'itertuples' , 'zip', 'izip'], 'time':time_stat}) time_df.sort_values('time') items time 5 izip 0.034869 4 zip 0.040440 3 itertuples 0.072604 1 enumerate 0.174094 2 iterrows 4.026293 0 range(index) 21.921407

可以发现在时间花销上, izip > zip > itertuples > enumerate > iterrows > range(index)

转载请注明原文地址: https://www.6miu.com/read-20581.html

最新回复(0)