Kruskal算法:贪心+并查集=最小生成树

xiaoxiao2021-02-28  14

http://www.51nod.com/

Kruskal算法的高效实现需要一种称作并查集的结构。我们在这里不介绍并查集,只介绍Kruskal算法的基本思想和证明,实现留在以后讨论。

Kruskal算法的过程: (1) 将全部边按照权值由小到大排序。 (2) 按顺序(边权由小到大的顺序)考虑每条边,只要这条边和我们已经选择的边不构成圈,就保留这条边,否则放弃这条边。 算法 成功选择(n-1)条边后,形成一个棵最小生成树,当然如果算法无法选择出(n-1)条边,则 说明原图不连通。 以下图为例: 边排序后为: 1 AF 1 2 DE 4 3 BD 5 4 BC 6 5 CD 10 6 BF 11 7 DF 14 8 AE 16 9 AB 17 10 EF 33 算法处理过程如下: 处理边AF,点A与点F不在同一个集合里,选中AF。 处理边DE,点D与点E不在同一个集合里,选中DE 处理边BD,点B与点D不在同一个集合里,选中BD 处理边BC,点B与点C不在同一个集合里,选中BC

处理边CD,点C与点D在同一个集合里,放弃CD。

处理边BF,点B与点F不在同一个集合里,选中BF。 至此,所有的点都连在了一起,剩下的边DF,AE,AB,EF不用继续处理了,算法执行结束。

Kruskal算法的证明。假设图连通,我们证明Krusal算法得到一棵最小生成树。我们假设Kruskal算法得到的树是K (注意我们已经假设Kruskal算法一定可以得到生成树)。假设T是一棵最小生成树,并且K ≠T, K中显然至少有一条边。我们找到在K中,而不在T中最小权值的边e。 把e加入T中,则形成一个圈,删掉这个圈中不在K中的边f,得到新的生成树T’。 f的存在性,如果全里面所有的边都在K中,则K包含圈,矛盾。 考虑边权值关系: (1) 若w(f) > w(e), 则T’的权值和小于T的权值和,与T是最小生成树矛盾。 (2) 若w(f) < w(e), 说明Kruskal算法在考虑加入e之前先考虑了边f,之所以没加入f是因为f和之前加入的边形成圈,之前加入的边权值显然不超过w(f) (因为加边是从小到大的顺序加入的),所以之前加入的边权值一定小于w(e)。而根据e的定义,K中权值小于w(e)的边都在T中,这说明T中的边会和f构成圈,矛盾。 所以只能w(f) = w(e)。T’仍然是最小生成树,而T’和K相同的边多了一条。 这样下去有限步之后,最终可以把T变为K,从而K也是最小生成树。 最后,我们来提供输入输出数据,由你来写一段程序,实现这个算法,只有写出了正确的程序,才能继续后面的课程。 输入 第1行:2个数N,M中间用空格分隔,N为点的数量,M为边的数量。(2 <= N <= 1000, 1 <= M <= 50000) 第2 - M + 1行:每行3个数S E W,分别表示M条边的2个顶点及权值。(1 <= S, E <= N,1 <= W <= 10000) 输出 输出最小生成树的所有边的权值之和。 输入示例 9 14 1 2 4 2 3 8 3 4 7 4 5 9 5 6 10 6 7 2 7 8 1 8 9 7 2 8 11 3 9 2 7 9 6 3 6 4 4 6 14 1 8 8 输出示例 37 请选取你熟悉的语言,并在下面的代码框中完成你的程序,注意数据范围,最终结果会造成Int32溢出,这样会输出错误的答案。 不同语言如何处理输入输出,请查看下面的语言说明。 使用并查集和贪心思想。适合稀疏图。 Kruskal算法实现: [cpp] view plain copy print ? #include <iostream>  #include <stdio.h>  #include <stdlib.h>  using namespace std;  int parent[10];  int n,m;  int i,j;    struct edge{      int u,v,w; //边的顶点,权值  }edges[10];    //初始化并查集  void UFset(){      for(i=1; i<=n; i++) parent[i] = -1;  }    //查找i的跟  int find(int i){      int temp;      //查找位置      for(temp = i; parent[temp] >= 0; temp = parent[temp]);      //压缩路径      while(temp != i){          int t = parent[i];          parent[i] = temp;          i = t;      }      return temp;  }  //合并两个元素a,b  void merge(int a,int b){      int r1 = find(a);      int r2 = find(b);      int tmp = parent[r1] + parent[r2]; //两个集合节点数的和      if(parent[r1] > parent[r2]){          parent[r1] = r2;          parent[r2] = tmp;      }else{          parent[r2] = r1;          parent[r1] = tmp;      }  }    void kruskal(){      int sumWeight = 0;      int num = 0;      int u,v;      UFset();      for(int i=0; i<m; i++)      {          u = edges[i].u;          v = edges[i].v;            if(find(u) != find(v)){ //u和v不在一个集合              printf(”加入边:%d %d,权值: %d\n”, u,v,edges[i].w);              sumWeight += edges[i].w;              num ++;              merge(u, v); //把这两个边加入一个集合。          }      }      printf(”weight of MST is %d \n”, sumWeight);  }    //比较函数,用户排序  int cmp(const void * a, const void * b){      edge * e1 = (edge *)a;      edge * e2 = (edge *)b;      return e1->w - e2->w;  }    int main() {        scanf(”%d %d”, &n, &m);      for(i=0; i<m; i++){          scanf(”%d %d %d”, &edges[i].u,  &edges[i].v,  &edges[i].w);      }      qsort(edges, m, sizeof(edge), cmp);        kruskal();          return 0;  }  /* 测试数据: 7 9 1 2 28 1 6 10 2 3 16 2 7 14 3 4 12 4 5 22 4 7 18 5 6 25 5 7 24 输出: 加入边:1 6,权值: 10 加入边:3 4,权值: 12 加入边:2 7,权值: 14 加入边:2 3,权值: 16 加入边:4 5,权值: 22 加入边:5 6,权值: 25 weight of MST is 99   */   #include <iostream> #include <stdio.h> #include <stdlib.h> using namespace std; int parent[10]; int n,m; int i,j; struct edge{ int u,v,w; //边的顶点,权值 }edges[10]; //初始化并查集 void UFset(){ for(i=1; i<=n; i++) parent[i] = -1; } //查找i的跟 int find(int i){ int temp; //查找位置 for(temp = i; parent[temp] >= 0; temp = parent[temp]); //压缩路径 while(temp != i){ int t = parent[i]; parent[i] = temp; i = t; } return temp; } //合并两个元素a,b void merge(int a,int b){ int r1 = find(a); int r2 = find(b); int tmp = parent[r1] + parent[r2]; //两个集合节点数的和 if(parent[r1] > parent[r2]){ parent[r1] = r2; parent[r2] = tmp; }else{ parent[r2] = r1; parent[r1] = tmp; } } void kruskal(){ int sumWeight = 0; int num = 0; int u,v; UFset(); for(int i=0; i<m; i++) { u = edges[i].u; v = edges[i].v; if(find(u) != find(v)){ //u和v不在一个集合 printf("加入边:%d %d,权值: %d\n", u,v,edges[i].w); sumWeight += edges[i].w; num ++; merge(u, v); //把这两个边加入一个集合。 } } printf("weight of MST is %d \n", sumWeight); } //比较函数,用户排序 int cmp(const void * a, const void * b){ edge * e1 = (edge *)a; edge * e2 = (edge *)b; return e1->w - e2->w; } int main() { scanf("%d %d", &n, &m); for(i=0; i<m; i++){ scanf("%d %d %d", &edges[i].u, &edges[i].v, &edges[i].w); } qsort(edges, m, sizeof(edge), cmp); kruskal(); return 0; } /* 测试数据: 7 9 1 2 28 1 6 10 2 3 16 2 7 14 3 4 12 4 5 22 4 7 18 5 6 25 5 7 24 输出: 加入边:1 6,权值: 10 加入边:3 4,权值: 12 加入边:2 7,权值: 14 加入边:2 3,权值: 16 加入边:4 5,权值: 22 加入边:5 6,权值: 25 weight of MST is 99 */

转载请注明原文地址: https://www.6miu.com/read-200348.html

最新回复(0)