Machine Learning in action –kNN(已勘误)

xiaoxiao2021-02-28  122

Machine Learning in action –kNN

最近在自学机器学习,应导师要求,先把《Machine Learning with R》动手刷了一遍,感觉R真不能算是一门计算机语言,感觉也就是一个功能复杂的计算器。所以这次就决定使用经典教材《Machine Learning in action》。因为开学得换work station ,怕到时候代码又丢了,所以就索性开个博客,把代码上传上来。

talk is cheap show me the code

函数定义代码

#coding=utf-8 from numpy import * import operator import matplotlib import matplotlib.pyplot as plt import os def classify0(inX, dataset, lables, k): #shape返回矩阵的[行数, 列数] #shape[0]就是行数 dataSetSize = dataset.shape[0] #将 输入的inX转换为和dataSet一样的矩阵形式 matri_temp = tile(inX, (dataSetSize, 1)) #求 inX 到各个 train_data的距离 diffMat = matri_temp - dataset sqDiffMat = diffMat**2 #平方和 sqDistance = sqDiffMat.sum(axis = 1)#按行累加 ,axis = 1 表示行 #对平方和开根号 distance = sqDistance**0.5 #按照升序排序,返回的是原数组的下标 sortedDistIndicies = distance.argsort() #创建一个空字典 classCount = {} #统计前k个最近的样本所属类别包含的样本个数 for i in range(k): index = sortedDistIndicies[i] votelable = lables[index] #classCount.get(votelabel, 0 )返回voteIlabel的值,如果不存在,则返回0 classCount[votelable] = classCount.get(votelable, 0) + 1 #按照类别计数结果降序 sortedClassCount = sorted(classCount.items(), key = operator.itemgetter(1), reverse = True ) return sortedClassCount[0][0] def file2matrix(filename): fr = open(filename) arrayOlines = fr.readlines() numOfLines = len(arrayOlines) #文件的行数 returnMat = zeros((numOfLines, 3)) #创建一个0的矩阵 #returnMat = [[] * 3] * numOfLines classLabelVector = [] index = 0 for line in arrayOlines: line = line.strip() listFromLine = line.split('\t') returnMat[index,:] = listFromLine[0:3] #returnMat[index,i] = float(listFromLine[i]) classLabelVector.append(int(listFromLine[-1])) index += 1 return returnMat, classLabelVector #归一化特征 def autoNorm(dataset): #每列的最小值 minVals = dataset.min(0) #每列的最大值 maxVals = dataset.max(0) ranges = maxVals - minVals normDataSet = zeros(shape(dataset)) m = dataset.shape[0] #行数 normDataSet = dataset - tile(minVals, (m,1)) normDataSet = normDataSet / tile(ranges, (m,1)) return normDataSet, ranges, minVals def img2vector(filename): returnVect = zeros((1, 1024)) fr = open(filename) for i in range(32): lineStr = fr.readline() for j in range(32): returnVect[0, 32*i+j] = int(lineStr[j]) return returnVect def handwritingClassTest(): hwlabels = [] trainingFileList = os.listdir('trainingDigits') m = len(trainingFileList) trainingMat = zeros((m,1024)) for i in range(m): fileNameStr = trainingFileList[i] fileStr = fileNameStr.split('.')[0] classNumStr = int(fileStr.split('_')[0]) hwlabels.append(classNumStr) trainingMat[i,:] = img2vector('trainingDigits/%s' %fileNameStr) testFileList = os.listdir('testDigits') errorCount = 0.0 mTest = len(testFileList) for i in range(mTest): fileNameStr = testFileList[i] fileStr = fileNameStr.split('.')[0] classNumStr = int(fileStr.split('_')[0]) vectorUnderTest = img2vector('testDigits/%s'%fileNameStr) classifierResult = classify0(vectorUnderTest, trainingMat, hwlabels,3) print("the classifier came back with :%d ,the real answer is :%d"\ %(classifierResult,classNumStr)) if(classifierResult != classNumStr): errorCount += 1 print("\n the total number of error is %d"%errorCount) print("\n the total number rate is :%f"%(errorCount/float(mTest)))

在撸代码的时候,犯了一个subtle and deadly 的错误,在 file2matrix中,误将 readlines() 写成了readline() ,虽然两者只相差一个 s ,但是确实天壤之别的含义。前者是读入所有的数据,后者是只读入一行数据,就这一点差别,让我debug了好几个小时,以后还得细心啊。

上面代码块只是定义了主要的函数,离运行还差一点。由于书原文中,采用了使用 iPython 命令行的运行方式,但是博主比较懒,所以干脆舍弃掉原来的方式,直接在代码最后添加

代码块

if __name__ == "__main__":

废话不多少,直接上代码

实验1 -分类

if __name__=="__main__": #导入数据 dataset, lables = createDataSet() inX = [0.1, 0.01] #分类 className = classify0(inX, dataset, lables, 3) print("the class of test sample is %s" %className)

实验2 :file2matrix

if __name__ == "__main__": datingDataMat, datingLabels = file2matrix('datingTestSet2.txt') normData , ranges, minVals = autoNorm(datingDataMat) print(normData) print('/n') print(ranges) print('/n') print(minVals)

实验3 :使用Matplotlib创建散点图

if __name__ == "__main__": datingDataMat, datingLabels = file2matrix('datingTestSet2.txt') fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(datingDataMat[:,1], datingDataMat[:,2], 15.0 * array(datingLabels), 15.0 * array(datingLabels)) plt.show()

实验4 :归一化特征值

if __name__ == "__main__": datingDataMat, datingLabels = file2matrix('datingTestSet2.txt') normData , ranges, minVals = autoNorm(datingDataMat) print(normData) print('\n') print(ranges) print('\n') print(minVals)

实验5 :手写识别系统

if __name__ == "__main__": handwritingClassTest()

更多请戳github https://github.com/Edgis/Machine-learning-in-action/blob/master/kNN.py

转载请注明原文地址: https://www.6miu.com/read-18304.html

最新回复(0)