[spoj COT - Count on a tree]树上第K小

xiaoxiao2021-02-28  124

[spoj COT - Count on a tree]树上第K小

分类:Data Structure Presidental Tree template

1. 题目链接

[spoj COT - Count on a tree]

2. 题意描述

N个节点的树,树上每个节点有一个点权。M次询问,每次询问一条链上的第 k 小数。 数据范围:(N,M<=100000) Time limit: 0.129s-0.516s Memory limit: 1536MB

3. 解题思路

本来以为跟COT2一样可以用莫队在树上跑。第k小的维护可以用pbds,线段树之类的东西维护。这样的复杂度是 O(nnlog2n) 。本题时间卡得比较紧,而且上述算法的复杂度偏高。 正解应该是主席树。看到给出的内存限制这么大应该联想到了... 在序列上,求第 k 小,步骤是先将点进行离散化,用主席树维护的是一个离散化之后点的前缀和。然后,查询的时候,对区间二分。 将情形推广到树上,同样的也是先将点进行离散化,然后从根节点,dfs向下依次将节点加入到主席树中。 那么询问(uv)的路径上的点的时候,就是 sum[u]+sum[v]2sum[lca(u,v)]+lca(u,v) .

4. 实现代码

#include <bits/stdc++.h> using namespace std; #define FIN(x) freopen(#x".txt", "r", stdin) const int MAXN = 110000; const int DEEP = 20; int n, m; int w[MAXN], f[MAXN], fsz; struct Edge { int v, next; } edge[MAXN << 1]; int head[MAXN], tot, dep[MAXN], fa[MAXN][DEEP]; void init_edge() { tot = 0; memset(head, -1, sizeof(head)); } inline void add_edge(int u, int v) { edge[tot] = Edge{v, head[u]}; head[u] = tot ++; } int lca(int u, int v) { while(dep[u] != dep[v]) { if(dep[u] < dep[v]) swap(u, v); int d = dep[u] - dep[v]; for(int i = 0; i < DEEP; ++i) { if(d >> i & 1) u = fa[u][i]; } } if(u == v) return u; for(int i = DEEP - 1; i >= 0; --i) { if(fa[u][i] != fa[v][i]) { u = fa[u][i]; v = fa[v][i]; } } return fa[u][0]; } #define lch(u) nd[(u)].ch[0] #define rch(u) nd[(u)].ch[1] struct TNode { int sum, ch[2]; inline void reset() { sum = ch[0] = ch[1] = 0; } } nd[MAXN * 20]; int ndIdx, root[MAXN]; void build(int l, int r, int& rt) { rt = ++ ndIdx; nd[rt].reset(); if(l == r) return; int md = (l + r) >> 1; build(l, md, lch(rt)); build(md + 1, r, rch(rt)); } void update(int p, int l, int r, int& rt, int prt) { rt = ++ ndIdx; nd[rt] = nd[prt]; ++ nd[rt].sum; if(l == r) return; int md = (l + r) >> 1; if(p <= md) update(p, l, md, lch(rt), lch(prt)); else update(p, md + 1, r, rch(rt), rch(prt)); } int kth(int k, int l, int r, int u, int v, int anc, int ancp) { if(l == r) return l; int md = (l + r) >> 1; int sum = nd[lch(u)].sum + nd[lch(v)].sum - nd[lch(anc)].sum * 2 + (l <= ancp && ancp <= md); if(sum >= k) return kth(k, l, md, lch(u), lch(v), lch(anc), ancp); else return kth(k - sum, md + 1, r, rch(u), rch(v), rch(anc), ancp); } int kth(int k, int u, int v) { int anc = lca(u, v), ancp = w[anc]; int le = 1, ri = fsz, md, sum; u = root[u], v = root[v], anc = root[anc]; while(le < ri) { md = (le + ri) >> 1; sum = nd[lch(u)].sum + nd[lch(v)].sum - nd[lch(anc)].sum * 2 + (le <= ancp && ancp <= md); if(sum >= k) { ri = md; u = lch(u), v = lch(v), anc = lch(anc); } else { k -= sum; le = md + 1; u = rch(u), v = rch(v), anc = rch(anc); } } return le; } void dfs(int u, int pre, int deep) { int v; dep[u] = deep; fa[u][0] = pre; update(w[u], 1, fsz, root[u], root[pre]); for(int i = head[u]; ~i; i = edge[i].next) { v = edge[i].v; if(v == pre) continue; dfs(v, u, deep + 1); } } int main() { #ifdef ___LOCAL_WONZY___ FIN(input); #endif // ___LOCAL_WONZY___ int u, v, k; scanf("%d %d", &n, &m); fsz = 0; for(int i = 1; i <= n; ++i) { scanf("%d", &w[i]); f[++ fsz] = w[i]; } sort(f + 1, f + fsz + 1); fsz = unique(f + 1, f + fsz + 1) - f - 1; for(int i = 1; i <= n; ++i) w[i] = lower_bound(f + 1, f + fsz + 1, w[i]) - f; init_edge(); for(int i = 2; i <= n; ++i) { scanf("%d %d", &u, &v); add_edge(u, v); add_edge(v, u); } ndIdx = 0; build(1, fsz, root[0]); dfs(1, 0, 0); for(int i = 1; i < DEEP; i++) { for(int j = 1; j <= n; j++) { fa[j][i] = fa[fa[j][i - 1]][i - 1]; } } for(int i = 1; i <= m; ++i) { scanf("%d %d %d", &u, &v, &k); int pos = kth(k, u, v); // int anc = lca(u, v); // int pos = kth(k, 1, fsz, root[u], root[v], root[anc], w[anc]); printf("%d\n", f[pos]); } #ifdef ___LOCAL_WONZY___ cout << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC * 1000 << "ms." << endl; #endif // ___LOCAL_WONZY___ return 0; }
转载请注明原文地址: https://www.6miu.com/read-18057.html

最新回复(0)