CodeForces - 359B

xiaoxiao2021-02-27  126

A permutation p is an ordered group of numbers p1,   p2,   ...,   pn, consisting of n distinct positive integers, each is no more than n. We'll define number n as the length of permutation p1,   p2,   ...,   pn.

Simon has a positive integer n and a non-negative integer k, such that 2k ≤ n. Help him find permutation a of length 2n, such that it meets this equation: .

Input

The first line contains two integers n and k (1 ≤ n ≤ 50000, 0 ≤ 2k ≤ n).

Output

Print 2n integers a1, a2, ..., a2n — the required permutation a. It is guaranteed that the solution exists. If there are multiple solutions, you can print any of them.

Example Input 1 0 Output 1 2 Input 2 1 Output 3 2 1 4 Input 4 0 Output 2 7 4 6 1 3 5 8 Note

Record |x| represents the absolute value of number x.

In the first sample |1 - 2| - |1 - 2| = 0.

In the second sample |3 - 2| + |1 - 4| - |3 - 2 + 1 - 4| = 1 + 3 - 2 = 2.

In the third sample |2 - 7| + |4 - 6| + |1 - 3| + |5 - 8| - |2 - 7 + 4 - 6 + 1 - 3 + 5 - 8| = 12 - 12 = 0.

当时自己也是知道肯定存在着某些关系,只不过是在找不到,有什么规律。现在明白了,我们从大到小排序例如:4 3 2 1,我们每反转一个相邻的就会使差值增加2,2K<=n,所以我们知道这就是规律了,还是多写几个例子,多变换,自己来找规律。

#include<stdio.h> #include<string.h> #include<algorithm> using namespace std; typedef long long ll; const int maxn=1e5+10; int val[maxn]; int main() { int n,m; scanf("%d %d",&n,&m); for(int i=1;i<=2*n;i++) val[i]=i; for(int i=n*2;i>=1;i--) { if(m>0&&i%2==0) { m--; swap(val[i],val[i-1]); } if(i==n*2) printf("%d",val[i]); else printf(" %d",val[i]); } printf("\n"); return 0; }

转载请注明原文地址: https://www.6miu.com/read-17082.html

最新回复(0)